2009 BASELINE HYDROGEOLOGY STUDY

PREPARED FOR

Copper Fox Metals Inc. (Calgary) 650, 340 – 12 Ave. S.W. Calgary, AB T2R 1L5

PREPARED BY

Knight Piésold Ltd. Suite 1400 – 750 West Pender Street Vancouver, BC V6C 2T8

VA101-329/8-1 Rev 0 April 1, 2010

2009 BASELINE HYDROGEOLOGY STUDY (REF. NO. VA101-329/8-1)

Description	Date	Approved
Issued In Final	April 1, 2010	KIB
	····	

Knight Piésold Ltd.

Suite 1400 750 West Pender Street Vancouver, British Columbia Canada V6C 2T8 Telephone: (604) 685-0543 Facsimile: (604) 685-0147 www.knightpiesold.com

2009 BASELINE HYDROGEOLOGY STUDY (REF. NO. VA101-329/8-1)

EXECUTIVE SUMMARY

The Schaft Creek project is a large porphyry copper-gold-molybdenum-silver deposit located within the Stikine-Iskut region of northwestern British Columbia, approximately 60 km southwest of Telegraph Creek and 1,050 km north of Vancouver. The area is characterized by steep sided mountains and broad U-shaped valleys trending north-south. The study area is bounded to the east by the northerly flowing Mess Creek and to the west by Schaft and Hickman Creeks, which also flow to the north and merge with Mess Creek downstream of the study site.

The deposit is located in the southern portion of the study area, on the southwest slopes of Mount LaCasse, and the proposed waste dumps are located along the south and eastern slopes and into the floodplain of Schaft Creek. The proposed plant site is located within a saddle to the east of the deposit, and the proposed tailings storage facility is located in the Skeeter Creek Valley.

Knight Piésold Ltd. (KP) was requested to complete a baseline hydrogeology and groundwater quality study for the project. The work consisted of reviewing information from previous studies and incorporating physical hydrogeological and groundwater quality testing completed by KP and Rescan Environmental Services (Rescan) in 2008 and 2009 to produce an updated study of the baseline hydrogeologic and groundwater quality conditions.

Groundwater Hydrology

Information regarding the groundwater hydrology of the study area was obtained from a number of sources including:

- Geotechnical and geological information, including rock and overburden logs, from the 2007 and 2008 geotechnical site investigation programs.
- A cross hole seismic tomography study completed by Associated Geosciences to further investigate karst susceptible terrain within Skeeter Creek Valley.
- Groundwater levels obtained from vibrating wire piezometers installed in the deposit area, water level measurements taken following drilling of geotechnical drill holes, and water level measurements taken prior to well development and subsequent groundwater sampling.
- Hydrogeologic testing, including falling and rising head tests and packer tests.

Information from the geotechnical site investigation programs allowed for characterization of the bedrock and surficial geology that provides a context for the hydrogeology of the site. The surficial geology of the site is of particular importance, as remnants of the Quaternary glaciation appear to dominate the hydrogeologic regime. The major aquifers on site are located in a number of alluvial deposits, including the alluvial deposits within Schaft Creek, a former channel east of Schaft Creek, and within Skeeter Creek Valley. These aquifers are also the primary areas of groundwater discharge, with recharge occurring from the upslope areas. Information from previous hydrogeologic and geotechnical site investigations

facilitated the identification of groundwater divides and the general direction of groundwater flow in the study area.

The bedrock geology of the site is characterized by sedimentary and volcanic rocks that have been intruded by granitic plutons. The geology in the deposit area includes volcanics (tuffs, flow breccias and andesite) and intrusives (granodiorite). The geology of the Skeeter Creek Valley includes dolomitic limestone, undifferentiated carbonate, and basalt and breccias flows. Carbonate (limestone) bedrock can often include solution features, and in some cases, karstic features. Efforts have been made to either confirm or disprove the presence of potential karst formations. Site investigations included surface and cross hole seismic tomography, and targeted geotechnical drilling. No evidence of voids or karstic features was detected during the course of the investigations; however, monitoring of this area should continue so that any voids or elevated bedrock permeability resulting from solution features are identified. Granodiorite and gabbro intrusives have been mapped at the north end of Skeeter Creek Valley.

Groundwater measurements from a multi-level vibrating wire piezometer system installed in an east-west trending fault/shear zone in the deposit area indicate a shallow water table with strong downward gradients. The strong downward gradients are likely related to a nearby shear zone.

Groundwater level measurements taken throughout the deposit area indicated that the groundwater levels vary from artesian conditions to approximately 5 m below ground surface. However, most of these measurements were taken soon after drilling was completed and are not considered an accurate representation of the groundwater level.

Groundwater Quality

Sixteen groundwater quality monitoring wells were installed at eight locations throughout the project site. Two monitoring wells were installed at each location: a shallow well and a deep well. Each of the groundwater quality monitoring wells were sampled by Rescan in the fall of 2008. KP continued the groundwater quality monitoring program in the fall of 2009.

The groundwater samples from the project area are generally slightly alkaline to alkaline; a number of wells located in the deposit area and Schaft Creek had pH exceedances in the range of 11 and above. The wells with pH exceedances also indicated ammonia exceedances. Increased ammonia concentrations could be a result of the elevated pH, as the solubility of ammonia in water increases with alkalinity. The elevated pH is probably the result of cement contamination during installation. The groundwater throughout the site has a high buffering capacity with alkalinity values greater than 20 mg/L.

Sulphate and fluoride exceedances were noted in a number of wells, as were dissolved and total metal exceedances. Dissolved metal exceedances were noted for aluminium, arsenic, beryllium, cadmium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc, with the most common met exceedances being aluminium, and copper. Total metal exceedances were noted for aluminium, arsenic, cadmium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc, with the most common exceedances being aluminium, and zinc, with the most common exceedances being aluminium, copper, iron, silver, thallium, vanadium, and zinc, with the most common exceedances being aluminium, copper, iron, silver, and vanadium.

The groundwater facies in the deposit, Schaft Creek and saddle areas are calcium-magnesium to calcium-sodium and bicarbonate to bicarbonate-sulphate. The groundwater facies for Skeeter Creek Valley vary from sodium-calcium near the north TSF embankment, bicarbonate-sulphate to sulphate-bicarbonate near the northwest TSF embankment and magnesium-calcium and bicarbonate-sulphate near the south TSF embankment.

Conclusions and Recommendations

This baseline study provides a description of the groundwater regime within the study area that addresses: the location of aquifers and aquitards; the rate and direction of groundwater flow; the expected interaction with surface water; and the water quality characteristics of groundwater. The information presented in this report is adequate to support a feasibility level design of the project, although further study is required to complete the hydrogeologic characterization of the site to a level necessary for final design.

2009 BASELINE HYDROGEOLOGY STUDY (REF. NO. VA101-329/8-1)

TABLE OF CONTENTS

PAGE

EXECUTIV	E SUMMARY	
TABLE OF	CONTENTS	i
SECTION ·	1.0 - INTRODUCTION	
1.1	STUDY AREA1	
1.2	PROJECT BACKGROUND 1	
1.3	SCOPE OF WORK1	
SECTION 2	2.0 - SITE CONDITIONS	,
2.1	PHYSIOGRAPHY	5
2.2	CLIMATE AND HYDROMETEROLOGY	;
2.3	DRAINAGE	r
2.4	GEOLOGY4	,
	2.4.1 Bedrock	,
	2.4.2 Overburden	
SECTION 3	3.0 - SITE INVESTIGATIONS AND MONITORING	;
3.1	SITE INVESTIGATIONS	,
3.2	HYDROGEOLOGIC INFORMATION	
	3.2.1 Groundwater Levels7	,
	3.2.2 Hydrogeologic Testing	;
3.3	CROSS HOLE SEISMIC TOMOGRAPHY	
SECTION	4.0 - GROUNDWATER HYDROLOGY)
4.1	INTRODUCTION)
4.2	SCHAFT CREEK VALLEY 10)
	4.2.1 Description)
	4.2.2 Hydrogeologic Properties)
	4.2.3 Groundwater Levels)
	4.2.4 Groundwater Flow Rates and Directions11	
4.3	DEPOSIT AREA11	
	4.3.1 Hydrogeologic Units11	
	4.3.2 Hydrogeologic Properties	
	4.3.3 Groundwater Levels	
	4.3.4 Groundwater Flow Rates and Directions	5
4.4	SADDLE AREA	5

	4.4.1	Hydrogeologic Units	13
	4.4.2	Hydrogeologic Properties	13
	4.4.3	Groundwater Levels	13
	4.4.4	Groundwater Flow Rates and Directions	13
4.5	SKEE	FER CREEK VALLEY	14
	4.5.1	Hydrogeologic Units	14
	4.5.2	Hydrogeologic Properties	14
	4.5.3	Groundwater Levels	14
	4.5.4	Groundwater Flow Rates and Directions	14
SECTION		OUNDWATER QUALITY	
5.1	GENE	RAL	16
5.2		ODOLOGY	
	5.2.1	Monitoring Well Preparation	
	5.2.2	In Situ Measurements	
	5.2.3	Sampling and Preservation	
	5.2.4	Laboratory Analysis	
5.3		TY ASSURANCE/QUALITY CONTROL	
	5.3.1	Field and Travel Blanks	
	5.3.2	Blind Duplicates	18
	5.3.3	Cation and Anion Balance	
5.4	SUMMARY OF WATER QUALITY RESULTS 19		
	5.4.1	Schaft Creek Valley	19
	5.4.2	Deposit Area	21
	5.4.3	Saddle Area	22
	5.4.4	Skeeter Creek Valley	22
SECTION		ALYSIS AND RECOMMENDATIONS	
6.1		NDWATER HYDROLOGY SUMMARY	
6.2	GROUNDWATER QUALITY SUMMARY25		
6.3	CONC	LUSIONS	26
SECTION	7.0 - RE	FERENCES	27
SECTION	8.0 - CE	RTIFICATION	29

TABLES

Table 3.1 Rev 0	Summary of Hydrogeological Information
Table 3.2 Rev 0	Summary of Hydrogeological Testing
Table 3.3 Rev 0	Summary of Overburden and Rockmass Hydraulic Conductivity
Table 3.4 Rev 0	Summary of Rockmass Hydraulic Conductivity by Location
Table 4.1 Rev 0	Groundwater Sample Location Descriptions
Table 4.2 Rev 0	Summary of Water Quality – Guideline Exceedances

FIGURES

Figure 1.1 Rev 0	Project Location Map
Figure 1.2 Rev 0	General Arrangement
Figure 2.1 Rev 0	Site Geology
Figure 3.1 Rev 0	2007 and 2008 Geotechnical Drill Hole Plan and Groundwater Levels
Figure 3.2 Rev 0	Drill Hole PO-05-07 Vibrating Wire Piezometers – Calculated Piezometric Head
Figure 3.3 Rev 0	Drill Hole PO-05-07 – Groundwater Temperature
Figure 3.4 Rev 0	Summary of Overburden and Rockmass Hydraulic Conductivity
Figure 3.5 Rev 0	Summary of Rockmass Hydraulic Conductivity by Location
Figure 3.6 Rev 0	Summary of Hydraulic Conductivity by Depth
Figure 4.1 Rev 0	Groundwater Monitoring Locations

APPENDICES

- APPENDIX A Geology of the Forrest Kerr-Mess Creek Area, Northwestern British Columbia
- APPENDIX B Summary of Groundwater Quality
 - B1 Summary of Groundwater Quality and Guideline Exceedances
 - B2 Summary of Quality Assurance and Quality Control Data

COPPER FOX METALS INCORPERATED SCHAFT CREEK PROJECT

2009 BASELINE HYDROGEOLOGY STUDY (REF. NO. VA101-329/8-1)

SECTION 1.0 - INTRODUCTION

1.1 STUDY AREA

The Schaft Creek project is a large porphyry copper-gold-molybdenum-silver deposit located in the Stikine-Iskut region of northwestern British Columbia, approximately 60 km southwest of Telegraph Creek and 1,050 km north of Vancouver, as shown on Figure 1.1. The study area and a general arrangement of the proposed mine development are shown on Figure 1.2. The study area includes:

- The deposit area (open pit)
- Areas surrounding the deposit area that may be developed for the plant site (saddle area) and waste dumps (deposit area and Schaft Creek)
- The proposed tailings storage facility (TSF) area (Skeeter Creek Valley)
- The corridor between the deposit area and the proposed TSF
- Areas immediately upslope of the areas defined above that may influence the groundwater conditions in these areas, and
- Areas immediately down gradient of the areas defined above where groundwater may be impacted by mining operations.

This study is focused on the areas near the deposit, waste dumps, and the proposed TSF.

1.2 PROJECT BACKGROUND

The deposit was initially indentified in the late 1950's and was staked by the BIK Syndicate in 1957. The deposit changed hands numerous times during the 1960's and 70's with Teck Corporation (now Teck Cominco and referred to herein as Teck) acquiring the property around 1979. Teck continued exploratory drilling and completed a Prefeasibility Study in the early 1980's. Mr. G. Salazar optioned an interest in the Project in 2002 and incorporated the property into Copper Fox Metals Incorporated (Copper Fox) in 2005. Copper Fox has since undertaken exploratory drilling programs in 2005, 2006, 2007 and 2008 and have commissioned numerous investigations and reports to support mine permitting and development.

A preliminary economic assessment of the project prepared by Samuel Engineering Incorporated (December, 2007) reported a measured and indicated resource of 1.4 billion tons of ore at 0.25% copper, 0.18% gold, 0.019% molybdenum and 1.55% silver.

1.3 <u>SCOPE OF WORK</u>

Knight Piésold Ltd. (KP) was requested to complete a baseline hydrogeology and groundwater quality study for the Schaft Creek project. This baseline study provides a description of the groundwater regime

within the study area that addresses: the location of aquifers and aquitards; the rate and direction of groundwater flow; the expected interaction with surface water; and the water quality characteristics of groundwater. The intent of this study is to characterize the existing groundwater regime and to provide a basis for defining impacts, mitigation measures, monitoring, and contingency planning as mine planning proceeds. The work consisted of reviewing information from previous studies and incorporating physical hydrogeological and groundwater quality testing completed by KP and Rescan Environmental Services (Rescan) in 2008 and 2009 to produce a baseline hydrogeologic and groundwater quality report.

Physical hydrogeologic information was obtained from studies and work completed by other consultants in 2006, 2007 and 2008 (Fisher and Hanych, March 2006; Ruthrie, July 2006; Ewanchuk, Fisher and Hanych, March 2007; DST, January 2008; DST, March 2008; RTEC, 2008; Rescan, 2009) and incorporated with information obtained during the 2008 geotechnical site investigation program (KP, January 2010). The physical hydrogeologic information considered in this report includes rock and overburden logs, groundwater level measurements, falling and rising head tests, and packer tests.

Groundwater quality information was obtained from studies and work completed by Rescan Tahltan Environmental Consultants (RTEC, 2008) and Rescan (2009), and incorporated with groundwater quality sampling data collected in the fall of 2009.

SECTION 2.0 - SITE CONDITIONS

2.1 <u>PHYSIOGRAPHY</u>

The Schaft Creek deposit is located within the Stikine-Iskut region of northwestern British Columbia, near the eastern edge of the Boundary Range of the Coast Mountains (BC Environment, 1992). The area is characterized by steep sided mountains and broad U-shaped valleys trending north-south. Ground elevations in the area typically range from around 700 to 900 m in the valley floors rising steeply to mountain peaks in excess of 2,500 m.

The topography of the region was predominantly influenced by events that occurred during the mid and late Tertiary and the Pleistocene. Weathering and erosion during the mid-Tertiary created an undulating surface across all rock types. Subsequent uplift combined with faulting and continued erosion during the late Tertiary created a gradient from the mountainous topography in the southwest (the area of greatest uplift and highest stream gradients) to dissected plateaus in the northeast. The entire region was then glaciated during the Pleistocene, the most extensive icefields and valley glaciers occurring within the more mountainous southwest region. Active glaciers can still be found in the region (Ryder, 1984).

The deposit is located in the southern portion of the study site, on the southwest slopes of Mount LaCasse, that rises to an elevation of more than 2,000 m. The proposed waste dumps are located along the south and eastern slopes and into the floodplain of Schaft Creek. The proposed plant site is located within a saddle to the east of the deposit, and the proposed tailings storage facility is located in the Skeeter Creek Valley.

2.2 CLIMATE AND HYDROMETEROLOGY

The Schaft Creek project site is located near the eastern edge of the Boundary Range of the Coast Mountains, just west of the Tahltan Highlands of the Stikine Plateau. The climate of the area is characterized by the transition zone between the marine climate of the Boundary Range and the continental climate of the Tahltan Highlands (BC Environment, 1992). Glaciers dominate the upper reaches of most of the local streams.

There are no long term site specific climate data for the project area; however, climate data have been collected in the immediate study area over two intervals: by BC Hydro from 1969 to 1974 and by Copper Fox from 2005 to present.

Rescan Tahltan Environmental Consultants (RTEC) indicated that 1,039 mm per year is a conservative estimate of mean annual precipitation at the study site using information from the four on-site stations and several meteorological stations within 130 km of the project area. RTEC has also reported that the monthly average air temperatures in 2006 ranged from -14.4°C in November to 12.5°C in July (2007).

Both temperature and precipitation are expected to vary with location and elevation in the study area, with colder temperatures and higher precipitation expected at higher elevations. Precipitation may also increase to the west, where the maritime influence will be stronger.

2.3 DRAINAGE

The study area is bounded to the east by the northerly flowing Mess Creek and to the west by Schaft and Hickman Creeks, which also flow to the north and merge with Mess Creek downstream of the study area.

The deposit is located in a saddle between the Schaft Creek and Mess Creek drainages. The proposed TSF is located within Skeeter Creek Valley, a hanging valley resulting from downcutting of Mess Creek.

2.4 <u>GEOLOGY</u>

2.4.1 <u>Bedrock</u>

The bedrock geology is characterized as sedimentary and volcanic rocks that have been intruded by granitic plutons. The geology in the deposit area includes volcanics (tuffs, flow breccias, and andesite), and intrusives (granodiorite). The geology of Skeeter Creek Valley includes dolomitic limestone, undifferentiated carbonate, and basalt and breccias flows. Granodiorite and gabbro intrusives have been mapped at the north end of Skeeter Creek Valley.

Regional structures generally trend north/south including inferred faults underlying Mess Creek Valley and Skeeter Creek Valley. Similar structures could be inferred underlying Schaft Creek Valley. Minor faults and shear zones have been mapped throughout the study area.

The geology of the project site is presented on Figure 2.1. The geology map used to create this figure, Geology of the Forrest Kerr-Mess Creek Area (Logan, Drobe, Koyanagi and Elsby, 1997), can be found in Appendix A.

2.4.2 <u>Overburden</u>

The surficial geologic features of the study area are dominated by late glacial and alluvial deposits infilling valley floors bordered by steep active slopes. The glacial history of the region provides a setting that allows for thick sand and gravel deposits as well as glacial lacustrine and moraine deposits. Glacial contact features such as lateral and terminal moraines and abandoned outwash channels may also be present. Active glaciers and steep alluvial fans continue to provide coarse alluvium to the stream channels.

SECTION 3.0 - SITE INVESTIGATIONS AND MONITORING

3.1 SITE INVESTIGATIONS

Geotechnical, geological and hydrogeological information was collected during the 2007 and 2008 geotechnical site investigations (DST, January 2008; DST, March 2008; KP, January 2010) and the 2007 (Rescan, March 2008), 2008 (Rescan, December 2009), and 2009 groundwater sampling programs. The geotechnical and geologic information collected, including rock and overburden logs, allowed for characterization of the bedrock and surficial geology that provides a context for the hydrogeology of the site. The hydrogeologic information collected includes groundwater level measurements, response tests, and water quality data. Water quality data from the 2007 groundwater sampling program was not considered in this summary, as the samples were collected directly from open drill holes, not from groundwater monitoring wells. The geotechnical site investigations and groundwater sampling programs are summarized below.

2007 - Geotechnical site investigation of the TSF area (DST, January 2008)

- 7 vertical drill holes were completed in the current TSF area
 - o 3 drill holes near the proposed south TSF embankment alignment
 - o 3 drill holes near the proposed north TSF embankment alignment, and
 - o 1 drill hole near the proposed northwest TSF embankment alignment.
- The overburden was logged
- Standard penetration tests (SPTs) were completed
- Rock core information was collected including lithology, total core recovery (TCR), solid core recovery (SCR), rock quality designation (RQD), fractures per meter, and rock mass rating (RMR)
- Select core samples were sent off-site for point load testing
- Groundwater levels were measured in all drill holes
- The following response tests were completed:
 - 16 falling head tests (FHTs) and 9 rising head tests (RHTs) along the proposed south TSF alignment
 - o 2 FHTs and 27 RHTs along the proposed north TSF alignment, and
 - o 6 RHTs along the proposed northwest TSF alignment.

2007 - Geotechnical site investigation of the deposit area (DST, March 2008)

- 8 drill holes, 7 oriented and one vertical, were completed
- The overburden was briefly described
- Rock core information was collected including lithology, TCR, SCR, RQD, fractures per meter, and RMR
- Groundwater levels were measured in 6 drill holes, and
- A multi-level vibrating wire piezometer system with 5 piezometers was installed in one drill hole.

2007 – Groundwater quality – piezometer installation and sampling (Rescan, March 2008)

- Two piezometers were installed in a drill hole in the deposit area (Copper Fox Drill Hole ID 07CF304)
- 4 drill holes were sampled for water quality.
 - o 1 drill hole near the proposed south TSF embankment alignment
 - o 1 drill hole near the proposed north TSF embankment alignment

- o 1 drill hole near the proposed northwest TSF embankment alignment, and
- 1 drill hole approximately 5 km south of the deposit area.
- Water samples were collected directly from the drill holes; no piezometers were installed.

2008 - Geotechnical site investigation of the deposit, waste dump, plant site, and TSF areas (KP, January 2010)

- 46 drill holes, 13 oriented and 33 vertical, were completed
 - o 10 oriented and 4 vertical drill holes in the deposit area
 - o 1 oriented and 9 vertical drill holes in the waste dump area
 - o 4 vertical drill holes in the plant site area
 - o 2 oriented and 7 vertical drill holes near the proposed south TSF embankment alignment
 - o 5 vertical drill holes near the proposed north TSF embankment alignment, and
 - 4 vertical drill holes near the proposed northwest TSF embankment alignment.
- The overburden was logged
- SPTs were performed
- Overburden samples in the drill holes were collected using Shelby tubes (STs)
- Rock core information was collected including lithology, recovery, RQD and RMR
- 104 test pits (TPs) and 15 Dutch auger holes were completed
- Select soil and rock samples were sent off-site for additional testing
 - 140 soil samples from SPTs, STs and TPs were tested for natural moisture content (140 samples), particle size distribution (140 samples), specific gravity (2 samples), and Atterberg limits (107 samples)
 - 45 rock samples were tested for unconfined compressive strength with unconfined compressive strength testing (21 samples) and point load testing (24 samples), and
 - o 6 rock samples were tested for shear strength with direct shear testing.
- Groundwater levels were measured in 41 drill holes
- The following response tests were completed:
 - o 74 packer tests
 - 52 packer tests in the deposit area
 - 14 packer tests in the waste dump area
 - 2 packer tests along the proposed south TSF embankment alignment
 - 3 packer tests along the proposed north TSF embankment alignment, and
 - 3 packer tests along the proposed northwest TSF embankment alignment.
 - 42 FHT and 69 RHT in drill rods
 - 17 FHT and 28 RHT in drill rods in the deposit area
 - 1 FHT and 7 RHT in drill rods in the waste dump area
 - 7 FHT and 2 RHT in drill rods in the plant site area
 - 9 FHT and 16 RHT in drill rods near the proposed south TSF embankment alignment
 - 3 FHT and 6 RHT in drill rods near the proposed north TSF embankment alignment, and
 - 5 FHT and 10 RHT in drill rods near the proposed northwest TSF embankment alignment.
 - o 27 FHT and 16 RHT in piezometers
 - 6 FHT and 2 RHT in piezometers in the deposit area
 - 7 FHT and 6 RHT in piezometers in the waste dump area
 - 2 FHT and 1 RHT in piezometers in the plant site area
 - 8 FHT in piezometers near the proposed south TSF embankment alignment

- 1 FHT and 4 RHT in piezometers near the proposed north TSF embankment alignment, and
- 3 FHT and 3 RHT in drill holes near the proposed northwest TSF embankment alignment.

2008 - Groundwater quality - well development and sampling (Rescan, December 2009)

- 16 wells in 8 locations were identified as groundwater quality wells
- 12 wells were developed in 6 locations
 - o 2 wells in the deposit area
 - 6 wells in the waste dump area
 - o 2 wells near the proposed north TSF embankment alignment, and
 - o 2 wells near the proposed northwest TSF embankment alignment.
- Groundwater levels were measured in 16 wells
- RHTs were completed in the 12 developed wells, and
- All 16 wells were sampled for water quality.

2009 – Groundwater quality sampling (KP, October/November 2009)

- Groundwater levels were measured in 14 wells, and
- 14 wells were sampled for water quality.

3.2 HYDROGEOLOGIC INFORMATION

A summary of the hydrogeologic information, including piezometric head, hydrogeologic equipment installed, completion zones, and hydrogeologic tests performed, is presented in Table 3.1. The 2007 and 2008 geotechnical site investigation drill hole location plan, including the measured values of piezometric head, can be seen on Figure 3.1.

3.2.1 Groundwater Levels

Groundwater level measurements were obtained from three sources: vibrating wire piezometers installed in the open pit area (DST, January 2008); water level measurements taken following drilling of geotechnical drill holes (DST, January 2008; DST, March 2008; KP, January 2010); and water level measurements taken prior to well development (Rescan, December 2008) and during subsequent groundwater sampling.

Vibrating Wire Piezometers

A multi-level vibrating wire piezometer system was installed in drill hole PO-05-07 during the 2007 site investigation program (DST, January 2008). Five vibrating wire piezometers were installed at approximately 20 m intervals within the drill hole; this corresponds to vertical intervals of approximately 17.5 m as the drill hole is inclined 62°. Each vibrating wire piezometer was installed within a sand pack and isolated from the other piezometers by bentonite seals. The vibrating wire piezometers were installed at the following vertical depths:

- VW Piezometer 1 16.1 m
- VW Piezometer 2 32.7 m
- VW Piezometer 3 52.3 m
- VW Piezometer 4 69.8 m, and
- VW Piezometer 5 87.4 m.

The vibrating wire piezometers were connected to a solar powered data logger programmed to take frequency (pressure) and temperature readings every hour. The most recent download from the data logger provided readings from October 15, 2007, the installation date, to September 25, 2008. It appears that the data logger was not in operation for several hours during July 13 and 14, 2008 and from July 15 to August 5, 2008. Plots of piezometric head versus time, and groundwater temperature versus time, are presented on Figures 3.2 and 3.3, respectively.

Measured Groundwater Levels

Groundwater levels were measured for most drill holes completed in 2007 and 2008 (see Table 3.1 and Figure 3.1). The groundwater levels measured by DST and KP were taken soon after drilling was completed (this was assumed to be the case for the holes drilled by DST as no dates were provided with the groundwater level measurements) and should only be used as an indication of the groundwater level. These measurements cannot be considered an accurate representation of long-term conditions, as the groundwater level may not have had time to stabilize following drilling.

A number of piezometers were developed by Rescan for hydrogeological testing and groundwater quality monitoring. Water level measurements in these drill holes were taken at three different times: soon after drilling was completed, prior to well development in late September 2008 (Rescan, December 2009), and prior to water quality sampling in late September/early October 2009. Water level measurements in these drill holes are considered representative of actual site conditions as the groundwater level had time to stabilize.

3.2.2 <u>Hydrogeologic Testing</u>

Hydrologic testing in many of the drill holes included packer tests, FHTs, and RHTs, in both the drill rods and in the piezometers at select depths. A summary of the hydrogeologic test results is presented in Table 3.2. Summaries of the overburden and rock mass hydraulic conductivities by overburden and rock type, and by location, can be found in Tables 3.3 and 3.4, respectively. Box and whisker plots of the hydraulic conductivities by overburden and rock type, and by location, can be found on Figures 3.4 and 3.5, respectively. Figure 3.6 shows the variation in hydraulic conductivity with depth for all drill holes. A brief description of the test conditions, procedures and results is presented in the sections below.

Falling and Rising Head Tests – Drill Rods

FHTs and RHTs in the drill rods were completed at select depths in many of the drill holes. The tests were generally completed in saturated conditions in both overburden and bedrock. Only two tests were completed in unsaturated conditions: FHT12-01 in drill hole KP08-12, and FHT37A-01 in drill hole KP08-37A.

The tests were performed by either pulling the drill casing up to a selected depth, exposing the walls and the bottom of the drill hole, or by leaving the casing at the bottom of the drill hole, exposing only the bottom of the drill hole. Water was then added or removed (water was added

for the FHT and removed for the RHT) and the subsequent water recovery was measured over a period of time.

FHTs and RHTs performed by KP in the drill rods were analysed using the Hvorsley method; it is not know what analytical method was used for the FHTs and RHTs performed by DST. Hydraulic conductivity values from FHTs and RHTs in the drill rods are considered as qualitative indications only as the test section may not have been isolated from the remainder of the drill hole (i.e. infiltration beneath the casing). For example, a high hydraulic conductivity zone in a hole may influence many lower test sections, and there is a possibility that measured responses are to the well bore annulus rather than to the formation.

Packer Testing

Packer tests were completed at select depths in approximately half the 2008 drill holes. The tests consist of seating inflatable bladders (packers) in competent bedrock to seal off a zone within the drill hole, pumping water at several constant pressure stages into the zone, and measuring the pumped flow rate for each pressure stage. Three ascending and two descending pressure stages were applied for each Packer test.

Falling and Rising Head Tests – Piezometer

Piezometers were installed by KP in most geotechnical drill holes completed in 2008 and by Rescan in an exploration drill hole completed in 2007. FHTs and RHTs in the piezometers were carried out to estimate the hydraulic conductivity of the completion zone. Testing was completed by KP following installation of the piezometers. Additional RHTs were carried out by Rescan in the piezometers used for groundwater quality monitoring following well development. Hydraulic conductivities obtained from RHTs following well development are considered to the more representative than those completed prior to well development.

3.3 CROSS HOLE SEISMIC TOMOGRAPHY

Cross hole seismic tomography was performed along the north and south TSF embankment alignments during the summer of 2008 by Associated Geosciences (AG) to further investigate the karst susceptible terrain identified by I. Spooner (no date) and BGC (November 2009). Cross hole seismic tomography involves installing a source array of seismic detonators and a receiver array in drill holes some distance apart, and generating a series of wavepaths. The receiver data was processed to develop a seismic velocity model. Areas of low velocity could be interpreted as karst terrain or collapsed zones (AG, November 2009).

Cross hole seismic tomography was completed in drill holes A-SD07-01, A-SD07-02 and A-SD07-03 along the south embankment alignment and in drill holes A-ND07-01, A-ND07-02 and A-ND07-03 along the north embankment alignment. No voids or karstic formations were identified. The cross hole seismic tomography indicates a correlation with lithology, other geophysical logging, and RQD along both embankments (AG, November 2009). An anomaly was identified along the south embankment alignment, between drill holes A-SD07-01 and A-SD07-02 (the eastern portion) that may be a fracture zone, although AG have indicated that the fracture zone is likely cemented or quite narrow (November 2009).

SECTION 4.0 - GROUNDWATER HYDROLOGY

4.1 INTRODUCTION

Groundwater will generally move from recharge areas, on high ground, towards discharge areas on low ground. The groundwater surface is therefore expected to be a muted replication of the ground surface. This general condition is modified by the presence of aquifers and aquitards, or zones of higher and lower hydraulic conductivity. A conceptual understanding of the groundwater flow system requires recognition of topographic and drainage controls, as well as identification of aquifers and aquitards in the study area.

The following sections present a brief discussion of the conceptual setting present within the study area, including identification of the primary groundwater pathways that may be of interest during design construction, operation, and closure of a mine.

4.2 <u>SCHAFT CREEK VALLEY</u>

4.2.1 <u>Description</u>

The Schaft Creek Valley is infilled with an assemblage of permeable deposits, including glacial outwash, alluvium, alluvial fans from valley walls, and reworked colluvium. The alluvium is fairly loose and extends to depths of up to 75 m. The valley infill is over 700 m wide and extends a considerable distance both upstream and downstream. The valley fill materials are underlain by intrusive bedrock. The bedrock is expected to be relatively impermeable.

This Schaft Creek Valley aquifer bifurcates upstream of the deposit area, with extensive permeable deposits expected in the Schaft Creek headwaters and in Hickman Creek. Both of these upstream valleys have glaciers in their headwaters. The aquifer is continuous downstream of the deposit to a location where the creek passes through a bedrock channel on the east side of the valley floor. The aquifer likely also continues downstream under the valley floor to the west of the bedrock controlled stream channel.

4.2.2 <u>Hydrogeologic Properties</u>

Response tests were carried out in piezometers installed in the permeable deposits of the Schaft Creek Valley in drill holes KP08-20 and RES08-03B. It was not possible to calculate the hydraulic conductivity in either test because the water level returned to static too quickly for measurement. This indicates that the hydraulic conductivity of the Schaft Creek Valley aquifer is greater than 1×10^{-3} cm/s.

4.2.3 <u>Groundwater Levels</u>

Groundwater levels measured in KP08-20 (1.5 mbgs) and RES08-03B (1.3 and 1.5 mbgs) are consistent with a permeable aquifer interacting with the stream. On average, the aquifer water table is expected to be slightly higher than the stream stage at most locations. Examples of exceptions include:

- The water table may be lower than the stream stage at times when the stream stage increases faster the groundwater table. Creek water will enter the aquifer during these periods (often termed bank storage).
- The stream gradient may flatten at some locations along the valley resulting in the stream stage rising above the groundwater table. This could occur upstream of a confluence where the additional sediment load can result in local flattening of the stream gradient and may result in reduction of stream base flows in the stream reach. The base flow often returns downstream as the groundwater emerges to rejoin the surface water.

Such groundwater/surface water interactions are common and expected along valley floors. On average, the groundwater gradient in a downstream direction will be similar to the stream gradient. The gradient of Schaft Creek near the deposit is approximately 1%.

4.2.4 Groundwater Flow Rates and Directions

The source of water for the Schaft Creek Valley aquifer includes direct precipitation (rainfall and snowmelt), runon from adjacent valley slopes, discharge of groundwater and, as noted above, periodic interaction with the stream.

The primary groundwater flow direction is downstream (north) with a component of flow towards the stream where groundwater is contributing to the stream base flow.

The estimated average flow rate within the Schaft Creek Valley aquifer is:

Q = KiA

where the hydraulic conductivity, K, is $5x10^{-2}$ cm/s, the gradient, i, is 0.01, and the area, A, is 35,000 m² (700 m wide and 50 m thick).

The estimated average flow rate, Q, is therefore $0.18 \text{ m}^3/\text{s}$

The flow rate will vary seasonally, probably near a maximum value through most of the nonfreezing months (except in very dry summers) and reducing over the winter as the aquifer continues to contribute to the base flow of Schaft Creek. Groundwater quantities in excess of the above estimate will discharge, contributing to stream flow.

4.3 <u>DEPOSIT AREA</u>

4.3.1 <u>Hydrogeologic Units</u>

The deposit area is located on the southwest slopes of Mount LaCasse, on the east side of Schaft Creek Valley. The area extends into a saddle between Schaft and Mess Creeks, and part way up the high slopes to the north and south of the saddle.

Overburden on the upper slopes is expected to be up to 30 m thick, and consists of predominantly clayey till with pebbles and boulders. As drill holes in these areas were drilled to support mine design, there is little detail regarding the overburden material properties. These materials are generally of moderate to low permeability and, combined with the underlying rock, form a low flow rate groundwater pathway from recharge sites on the hillside to overburden aquifers in the valleys below. Drill holes in the northern portion of the deposit area encountered highly fractured bedrock; enhanced permeability in the bedrock is expected in these locations.

Drill holes PO-05-07 and KP08-04 also encountered highly fractured bedrock. The vibrating wire piezometer system in PO-05-07 indicates a downward vertical gradient of approximately one, implying that the measured sequence is underdrained by a permeable unit. Packer test, FHTs, and RHTs in KP08-04 provided hydraulic conductivity values of approximately 1×10^{-3} cm/s at 75 mbgs, decreasing to approximately 5×10^{-5} cm/s at 500 mbgs. These drill holes are located in an east-west trending fault/shear zone and are thought to provide a downward flow path towards Schaft Creek.

Alluvium was logged within an abandoned channel east of Schaft Creek (south of the deposit within a trough on the lower slope). This infilled channel (tributary aquifer) may intercept seepage migrating downslope towards the Schaft Creek Valley aquifer, concentrating the discharge into a tributary of Schaft Creek.

4.3.2 <u>Hydrogeologic Properties</u>

The median hydraulic conductivity value from hydraulic testing in bedrock within the deposit area is $4x10^{-5}$ cm/s. Local areas, primarily near the top of the rock and within fractured zones, are expected to have higher hydraulic conductivity.

- Packer tests from KP08-04 and KP08-05 in the deposit area provide most of the available data for depths greater than 250 m. The approximate bulk hydraulic conductivity measured at these depths is approximately 5x10⁻⁵ cm/s in KP08-04 and 5x10⁻⁷ cm/s in KP08-05. The bulk hydraulic conductivity measured at KP08-04 is probable not indicative of the hydraulic conductivity of the deposit area as this drill hole is located in a fault/shear zone.
- The median hydraulic conductivity value from hydraulic testing in bedrock surrounding the deposit area, where waste rock may be stored, is 4x10⁻⁵ cm/s.

Although no testing was completed in the abandoned channel, the material descriptions and the documented recovery of water levels after drilling indicate that the permeability of this aquifer material is in the range of 1×10^{-4} to 1×10^{-3} cm/s.

4.3.3 <u>Groundwater Levels</u>

Artesian conditions were encountered in drill holes located in the alluvial deposits within the deposit area while deeper groundwater levels were encountered in the upslope portion. The water table was generally less than 5 m below ground surface.

Piezometric head values recorded for the five vibrating water piezometers installed in drill hole PO-05-07, in the middle of the deposit area, can be seen on Figure 3.2. All five piezometers were installed in bedrock (andesite and a dyke). The response of the units to spring freshet indicates that the units are well connected; all units responded to freshet with little lag time between the response of the upper piezometer and the lower piezometer.

4.3.4 Groundwater Flow Rates and Directions

Groundwater is generally recharged on the slopes and migrates downslope to Schaft Creek. Most of the available data indicate that the water table is at or near the ground surface. With steep mid slope surface gradients (assumed to be 0.5), bulk hydraulic conductivities of 1×10^{-5} cm/s, and an effective thickness of 200 m, the downslope flux is approximately 10 L/s per kilometre of slope.

An additional flux is likely flowing through east-west trending fault/shear zone near PO-05-07 and KP08-04. Flow along such a fault/shear zone could contribute an additional 10 L/s.

4.4 <u>SADDLE AREA</u>

4.4.1 <u>Hydrogeologic Units</u>

Alluvium in the saddle near the deposit is fairly loose near surface and extends to depths of up to 60 m. The saddle aquifer provides a conduit for groundwater recharging locally and into adjacent slopes. The aquifer underlying the valley floor is estimated to be an average of 30 m thick and 300 m wide.

The saddle is underlain by extrusive bedrock. There is potential for faulting aligned parallel to the saddle valley.

4.4.2 <u>Hydrogeologic Properties</u>

The median of three hydraulic conductivity values from hydraulic testing in bedrock is $9x10^{-5}$ cm/s. These values were measured in drill holes near the proposed plant site location.

4.4.3 <u>Groundwater Levels</u>

Artesian conditions were observed in bedrock at RES08-05A, while groundwater observations during drilling of other holes indicated depths to water of up to 10 m. The groundwater gradient is expected to be downslope above the saddle and to the east in the saddle overburden aquifer.

4.4.4 Groundwater Flow Rates and Directions

As with slopes in the deposit area, groundwater flow is expected to be downslope towards the saddle. The flow direction beneath the saddle in bedrock, and within the saddle aquifer, will be towards the east northeast and west southwest.

The rate of flow through the saddle aquifer will be limited by groundwater recharge, and likely in the order of 20 L/s.

4.5 SKEETER CREEK VALLEY

4.5.1 <u>Hydrogeologic Units</u>

Skeeter Creek is an underfit creek within the north end of a north-south trending abandoned valley, Skeeter Creek Valley. An infilled bedrock low has been identified under the west side of the valley where the bedrock low has been infilled with interbedded silts, sands and gravels. These materials form a moderate to low permeability aquifer.

The bedrock along the east slope of Skeeter Creek Valley includes carbonates (limestone). Carbonate bedrock often includes solution features, and in some cases, karstic features. Efforts have been made to either confirm or disprove the presence of potential karst formations includeing cross hole seismic tomography and targeted geotechnical drilling. No evidence of voids or karstic features were detected during the course of the investigations; however, monitoring of this area should continue so that any voids or elevated bedrock permeability resulting from solution features are identified.

Faults and fracture zones are expected to underlie the valley. No groundwater features have been observed to date that relate to permeable fault or fracture zones.

4.5.2 <u>Hydrogeologic Properties</u>

The median hydraulic conductivity value from hydraulic testing in bedrock within Skeeter Creek Valley (the proposed TSF area) is $5x10^{-5}$ cm/s. The distribution includes:

- The median hydraulic conductivity value from hydraulic testing in bedrock near the proposed north embankment is 3x10⁻⁵ cm/s
- The median hydraulic conductivity value from hydraulic testing in bedrock near the proposed south embankment is 8x10⁻⁵ cm/s, and
- The median hydraulic conductivity value from hydraulic testing in bedrock near the proposed northwest embankment is $4x10^{-5}$ cm/s.

4.5.3 <u>Groundwater Levels</u>

Drill holes located in the lacustrine units along the proposed TSF embankments exhibited both artesian conditions and deeper groundwater levels, although the artesian conditions were generally located in the eastern portion of the south TSF embankment, the western portion of the north TSF embankment, and along the entire northwest TSF embankment.

4.5.4 <u>Groundwater Flow Rates and Directions</u>

Groundwater recharges on valley slopes and migrates towards the valley floor. Groundwater is expected to discharge to the streambed and aquifer materials underlying the valley floor. Groundwater is expected to flow towards the north within the valley. The groundwater divide is

expected to be near the surface water divide at the proposed south TSF embankment. Groundwater flow rates to the north are expected to be less than 10 L/s.

SECTION 5.0 - GROUNDWATER QUALITY

5.1 <u>GENERAL</u>

Sixteen groundwater quality monitoring wells were installed by KP, under the direction of Rescan, at eight locations throughout the project site during the 2008 geotechnical site investigation program (KP, January 2010). Two monitoring wells were installed at each location: a shallow well and a deep well. The wells are located within areas of the proposed mine development, including the Schaft Creek Valley, the deposit area, the saddle area and Skeeter Creek Valley. Groundwater monitoring well location are shown on Figure 4.1, and descriptions can be found in Table 4.1.

Each of the groundwater quality monitoring wells was sampled by Rescan in the fall of 2008. KP continued the groundwater quality monitoring program in the fall of 2009, sampling fourteen of the wells at seven locations. The wells installed at one location, RES08-05A and RES08-05B at the plant site, were not found.

5.2 <u>METHODOLOGY</u>

5.2.1 Monitoring Well Preparation

The monitoring wells were prepared for sampling by purging the well until either three well volumes were removed or measurements of the *in situ* parameters stabilized, whichever came first. A pumping method was selected based on the depth of the completion zone, turbidity of the sample and hydraulic conductivity of the formation. A Waters Hydro lift[®] with 5/8" high density polyethylene tubing and a D25 foot value was used to pump the shallow or turbid wells and a Grundfos Redi-flo[®] submersible pump was used to pump the deep wells with high recharge and limited turbidity.

5.2.2 In Situ Measurements

A Yellow Springs Instrument 556 multiprobe system (YSI 556MPS) with a flow through cell was used to determine *in situ* parameters including temperature, pH, conductivity, specific conductance, dissolved oxygen, and redox potential. A flow through cell was used to limit groundwater interaction with the atmosphere.

Well volumes were analyzed every 15 L for chemical stabilization. Chemical stabilization was considered to be reached when the parameters had less than 5% difference in three consecutive readings. If stabilization did not occur the well was purged to three well volumes. At some locations (RES08-01A, RES08-01B, RES08-02A and RES08-02B) the wells were purged dry and sampled the following day due to time constraints (slow responding monitoring wells).

5.2.3 Sampling and Preservation

Groundwater samples were collected and preserved according to standard protocols adapted from the BC Integrated Land Management Bureau - Resources Information Standards Committee (RISC) document entitled "Ambient Fresh Water and Effluent Sampling Manual" (RISC, 1997).

Groundwater samples were collected in laboratory supplied pre-washed bottles and the field scientist used nitrile gloves while collecting the samples to limit contamination. The samples were preserved immediately after collection; dissolved samples were field filtered with an inline 45 micron polyethersulfone filter. Samples were then placed in coolers with ice packs and sent to the laboratory as soon as courier services were available.

5.2.4 Laboratory Analysis

The laboratory analysis of the groundwater samples consisted of testing the physical and chemical parameters, above detectable limits, and comparing the results with the BC Water Quality Guidelines (BCWQG) and Canadian Council of the Ministers of Environment (CCME) aquatic habitat standards. The samples collected were analyzed for the following parameters:

- Physical parameters:
 - о рН
 - o Specific conductance
 - o Total suspended solids
 - o Total dissolved solids
 - o Hardness, and
 - o Alkalinity.
- Chemical parameters:
 - Anions chloride, bromide, fluoride and sulphate
 - Nutrients ammonia, nitrate, nitrite, total and dissolved phosphate, dissolved orthophosphate and Total Kjeldahl Nitrogen (TKN)
 - Dissolved metals full suite of metals specific to the BCWQG and CCME aquatic habitat standards, and
 - o Total organic carbon.

A summary of the BCWQG and CCME aquatic habitat standards exceedances can be found in Table 4.2. The summarized analytical data for each monitoring well can be found in Appendix B1.

Piper plots were created for the groundwater samples in which the cation and anion balance was less than 10% (see Section 5.3.3). Piper plots are used to determine the hydrochemical facies of the groundwater sample by plotting the major cations and anions present in the water. The major cations present in water are calcium, magnesium, potassium and sodium, and the major anions are bicarbonate, sulphate and chloride. The Piper plots can be found on Figures B1.1 and B1.2 in Appendix B1.

5.3 QUALITY ASSURANCE/QUALITY CONTROL

The objective of the quality assurance/quality control (QA/QC) program is to verify that the data is obtained in a scientifically defensible, repeatable and well documented manner. The QA/QC program uses standard methods and protocols in compliance with ISO 9001 and ISO 14001 for the collection of groundwater quality samples. The following methods and protocols were carried out as per the QA/QC program:

- Regular calibration and maintenance and of all field equipment
- Collection and preparation of field blanks, travel blanks and duplicate samples for approximately 10% of overall samples
- Employment of a fully accredited analytical laboratory for the analysis of all the groundwater quality samples, and
- Determination of analytical precision and accuracy through the interpretation of the analysis reports for the blank samples and blind duplicates.

5.3.1 Field and Travel Blanks

Field blank samples are laboratory certified deionized water samples collected using the same sampling procedure and equipment as the water quality samples. They are used to identify sample contamination from the sampling equipment and procedures. Travel blanks are provided by the laboratory to determine if the samples were contaminated during shipment.

The field and travel blanks used during the 2008 groundwater sampling program were in exceedance of the method of detection limit (MDL) for bicarbonate alkalinity (as $CaCO_3$) and total alkalinity (as $CaCO_3$) with values of 1.2 mg/L and 1.6 mg/L, respectively. Alkalinity results for the samples collected had a minimum detectable value of 73 mg/L for both bicarbonate alkalinity (as $CaCO_3$) and total alkalinity (as $CaCO_3$). The exceedances have been noted and determined to have no effect on the sample set.

Neither the field blank nor the travel blank used during the 2009 groundwater sampling were in exceedance of the MDL.

A summary of the laboratory results from the field and travel blanks can be found in Table B2.1 in Appendix B2.

5.3.2 Blind Duplicates

A blind duplicate is a replicate sample collected in the field at a known location and submitted to the laboratory for analysis under an alias. The blind duplicate is used to verify the laboratory is providing reproducible results. A relative percent difference (RPD) calculation is applied to the laboratory results to determine the precision of the test results; the results are considered adequate if the RPD between the duplicate and alias is 25% or greater for concentrations that are 5 times greater than the MDL.

The blind duplicate analysis was completed on samples from RES08-06A for the 2008 groundwater sampling program. The samples did not meet the above criteria for the following parameters:

- Dissolved Barium RPD of 32%, and
- Dissolved Molybdenum RPD of 46%

These parameters were excluded from the 2008 data set.

The blind duplicate analysis was completed on samples from RES08-03B for the 2009 groundwater sampling program. The samples met the duplicate criteria for all parameters.

A summary of the laboratory results from samples collected from RES08-06A in 2008 and RES08-03B in 2009 can be found in Table B2.2 in Appendix B2.

5.3.3 Cation and Anion Balance

A cation and anion balance is used to detect error associated with the analysis of the major ionic species present in the groundwater samples. The major cations present in water are calcium, magnesium, potassium and sodium, and the major anions are bicarbonate, sulphate and chloride. The error between the sum of the cation species and the sum of the anion species should be less that 10%. An error greater than 10% could indicate either an analytical error or that a major ionic species was not accounted for.

The cation and anion balance error was greater than 10% for samples from RES08-04B in 2008, RES08-01B and RES08-02B in 2009, and RES08-01A, RES08-02A and RES08-04A in both 2008 and 2009. Eight of the nine samples with a cation and anion balance error greater than 10% also had pH exceedances.

The laboratory was contacted to confirm the analysis completed in 2009 and a repeat analysis verified the measured ion concentrations. Unfortunately, the data from 2008 could not be verified as it was over one year old.

A summary of the cation and anion balances can be found in Table B2.3 in Appendix B2.

5.4 <u>SUMMARY OF WATER QUALITY RESULTS</u>

A summary the groundwater quality results within each of the areas proposed for mine development, including Schaft Creek Valley, the deposit area, the saddle area and Skeeter Creek Valley, is presented in the sections below. The laboratory results were compared to the BCWQG and CCME aquatic habitat standards, and exceedances of these guidelines were noted (see Appendix B1). Details of which guideline was exceeded is not specified in the summary below; "exceedance" indicates only that the parameter was in exceedance of one or both of the guidelines.

5.4.1 <u>Schaft Creek Valley</u>

Groundwater quality monitoring wells RES08-03A, RES08-03B, RES08-04A and RES08-04B are located in the Schaft Creek Valley. RES08-03B is installed in overburden and the other three wells are installed in bedrock.

Monitoring well RES08-03B (overburden) had no exceedances other than in total metals, which had concentration exceedances with aluminium, arsenic, cadmium, copper, iron, lead, silver,

vanadium and zinc, These are associated with collection of turbid samples and are not representative of groundwater migration.

The bedrock monitoring well, RES08-04A had high pH values in both 2008 (12) and 2009 (11.9). The elevated pH is consistent with grout contamination of the monitoring zone. These samples are not representative of groundwater conditions and results from these samples have been excluded from the discussion below. The bedrock monitoring well RES08-04B had high pH values in both 2008 (11.9) and 2009 (9.05). The sample collected in 2009 with the lower pH and the lower TDS (141 mg/L) appears to be more representative of groundwater conditions than the 2008 sample, and is included in the discussion below.

In situ Parameters

RES08-04B, was slightly alkaline to alkaline with a pH of 9.05.

Physical Parameters

The groundwater is classified as fresh with TDS values generally less than 1000 mg/L (107 to 351 mg/L).

Dissolved Anions

Sulphate was in exceedance for RES08-03A in 2009.

Nutrients

No exceedances.

Dissolved Metals

Dissolved copper was exceeded in the RES08-04B sample in 2009.

Total Metals

Many exceedances were noted for total metals concentrations in 2008 including: aluminium, arsenic, cadmium, copper, iron, lead, nickel, selenium, silver, vanadium and zinc. These high concentrations are the result of turbid samples.

Hydrochemical Facies

The cation and anion balance error was greater than 10% in RES08-04B in 2008. Piper plots were therefore not created and the dominant cation and anion facies were not determined for this sample. The dominant cation and anion facies for the remaining samples, those with less than 10% error for the cation and anion balance, are summarized below.

- RES08-03A in 2008 calcium-magnesium and bicarbonate
- RES08-03A in 2009 calcium-magnesium and sulphate-bicarbonate, and
- RES08-04B in 2009 calcium and bicarbonate-carbonate.

5.4.2 Deposit Area

Groundwater quality monitoring wells RES08-01A and RES08-01B are located in the deposit area and RES08-02A and RES08-02B are on the slope to the south of the deposit. RES08-02B was installed in overburden and the other three wells were installed in bedrock. Samples from these wells, except RES08-02B, were alkaline with median pH values exceeding 11.5. The high pH is the result of accidental placement of grout within the monitoring zone during well construction. Groundwater samples from these three wells are not representative of groundwater conditions in the deposit area and results from these samples have been excluded from the discussion below.

The sample collected from RES08-02B had a pH of 8.4 and 8.6. In 2008, the sample had several exceedances of dissolved metals which were much higher than concentrations measured in 2009. Metal concentrations measured in 2008 are expected to be more representative of overburden groundwater conditions at RES08-02B.

In situ Parameters

The shallow monitoring well RES08-02B was slightly alkaline to alkaline.

Physical Parameters

The groundwater is classified as fresh, with TDS values less of than 1000 mg/L (137 and 117 mg/L). The TSS and turbidity values were high for RES08-02B in 2008 (1040 mg/L) and 2009 (2030 mg/L).

Dissolved Anions

Sulphate was the dominant anion, but not in exceedance at 31 and 28 mg/L.

Nutrients

No exceedances of nutrients were detected in samples from RES08-02B.

Dissolved Metals

RES08-02B had exceedances for aluminium, arsenic, copper and iron in 2008, and arsenic in 2009.

Total Metals

Many exceedances were noted for total metals concentrations in 2008 including: aluminium, arsenic, cadmium, copper, iron, lead, nickel, selenium, silver, vanadium and zinc. These exceedances are almost certainly the result of a turbid sample collected from the well. Total metals were not measured in 2009.

Hydrochemical Facies

The cation and anion balance error was greater than 10% in RES08-02B in 2009. Piper plots were therefore not created for that year. For 2008, the sample was characterized as sodium-calcium and sulphate dominant.

5.4.3 <u>Saddle Area</u>

Groundwater quality monitoring wells RES08-05A and RES08-05B are located in the saddle area. RES08-05A is installed in bedrock and RES08-05B is installed in overburden. These wells were not found, and therefore not sampled during the 2009 groundwater quality monitoring program. All data presented below were obtained from the samples collected in 2008.

Monitoring well RES08-05A (bedrock) was artesian during groundwater sampling.

In situ Parameters

In situ parameters were not measured in RES08-05A and RES08-05B.

Physical Parameters

The groundwater is classified as fresh with TDS values of less than 1000 mg/L (113, 168 mg/L).

Both wells were slightly alkaline with pH values of 8.2. RES08-05B had elevated TSS (1030 mg/L) and a turbidity value greater than 4000 NTU.

Dissolved Anions and Nutrients

There were no noted exceedances for dissolved anions or nutrients.

Dissolved Metals

Dissolved metals were in exceedance for aluminium, cadmium, copper and iron in RES08-05A (bedrock) and for aluminium, cadmium and copper in RES08-05B (overburden).

Total Metals

Aluminium and cadmium were in exceedance for RES08-05A (bedrock). The concentrations of several total metals in the sample from RES08-05A are lower than dissolved metals, which suggests a lack of quality control in the sampling or analysis.

Exceedances for RES08-05B include: aluminium, arsenic, cadmium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, vanadium and zinc.

The exceedances may be a result of elevated TSS and turbidity.

Total metals were not analyzed in 2009 at the request of the client.

Hydrochemical Facies

The dominant cation and anion facies are calcium and bicarbonate-sulphate for RES08-05A and calcium and bicarbonate for RES08-05B.

5.4.4 Skeeter Creek Valley

Locations of monitoring wells within Skeeter Creek valley are summarized below:

- RES08-06A (bedrock) and RES08-06B (overburden) are located near the proposed north TSF embankment alignment.
- RES08-07A (bedrock) and RES08-07B (overburden) are located near the proposed south TSF embankment alignment.
- RES08-08A (bedrock) and RES08-08B (overburden) are located near the proposed northwest TSF embankment alignment.

Monitoring wells RES08-07A (bedrock) and RES08-07B (overburden) were artesian during groundwater sampling in 2008 and 2009. The flow rate was greater for the deep well, RES08-07A.

In situ Parameters

The bedrock wells were slightly alkaline. The overburden wells, except for RES08-06B, were also slightly alkaline but less so than the bedrock wells.

The sample collected from RES08-6B in 2009 was acidic (6.44) in 2009 and in exceedance of the guidelines. The laboratory value for the same well (7.87), was neutral to slightly alkaline. The acidic measurement may be an anomaly and further sampling is required to support or reject this measurement.

Physical Parameters

The groundwater is generally considered to be fresh with TDS values of less than 1000 mg/L (268 to 500 mg/L for bedrock and 165 to 377 mg/L for overburden).

The sample collected from RES08-06B in 2008 was very turbid, greater than 4000 NTU, with a TSS value of 2890 mg/L. The TSS and turbidity values were high for RES09-07B in 2009. The TSS and turbidity values were high for RES08-08A and RES08-08B in 2009 and elevated for RES08-08A in 2009.

Dissolved Anions

Fluoride was in exceedance for all bedrock wells in 2008 and 2009. Sulphate was in exceedance in RES08-06A in 2009 and both sampling rounds in the other two bedrock wells.

Fluoride was in exceedance for overburden wells RES08-7B and RES08-8B in 2008 and 2009. Sulphate was in exceedance in RES08-07B for both years and in RES08-08B for 2008.

Nutrients

There were no noted exceedances for nutrients.

Dissolved Metals

Dissolved metals were in exceedance in 2008 only for bedrock wells RES08-06A (copper) and RES08-08A (aluminium, copper, iron and silver). These samples were turbid.

Dissolved metals were in exceedance in 2008 for overburden wells RES08-06B (aluminium, copper, iron, silver) and RES08-08B (aluminium, cadmium and iron), and in 2009 for well RES08-08B (iron). These samples were turbid.

Total Metals

Total metals were in exceedance for two bedrock wells (RES08-06A and RES08-08A). RES08-06A was in exceedance for aluminium, arsenic, cadmium, copper, iron, lead, mercury, molybdenum, nickel, silver, vanadium, and zinc. RES08-08A was in exceedance for aluminium, arsenic, beryllium, cadmium, copper, iron, lead, mercury, molybdenum, selenium, silver, vanadium, and zinc.

Total metals were in exceedance for two overburden wells (RES08-06B and RES08-08B). RES08-06B was in exceedance for aluminium, arsenic, cadmium, cobalt, copper, iron, lead, manganese, nickel, selenium, silver, thallium, vanadium, and zinc, and RES08-08B was in exceedance for aluminium, arsenic, cadmium, copper, iron, lead, molybdenum, selenium, silver, vanadium, and zinc.

The exceedances may be a result of elevated TSS and turbidity.

Total metals were not analyzed in 2009 at the request of the client.

Hydrochemical Facies

The dominant cation and anion facies for the bedrock wells are:

- Sodium-calcium-magnesium and sulphate-bicarbonate for RES08-06A
- RES08-07A in 2008 magnesium-calcium and bicarbonate-sulphate
- RES08-07A in 2009 magnesium-calcium-sodium and bicarbonate-sulphate, and
- RES08-08A in 2008 and 2009 sodium and sulphate-bicarbonate

The dominant cation and anion facies for the overburden wells are:

- Calcium-sodium-magnesium and bicarbonate-sulphate for RES08-06B
- RES08-07B in 2008 magnesium-calcium and bicarbonate-sulphate
- RES08-07B in 2009 magnesium-calcium-sodium and carbonate
- RES08-08B in 2008 calcium-sodium-magnesium and bicarbonate-sulphate, and
- RES08-08B in 2009 sodium-calcium and sulphate-bicarbonate.

SECTION 6.0 - ANALYSIS AND RECOMMENDATIONS

6.1 <u>GROUNDWATER HYDROLOGY SUMMARY</u>

A conceptual understanding of the groundwater hydrology of the study area has been developed with consideration of the site geology, specifically the surficial geology, groundwater level measurements and the results of hydrogeologic testing. This includes identification of the major aquifers and their hydrogeologic properties, the location of groundwater recharge and discharge areas, and the rate and direction of groundwater flow.

The major aquifers on site are located within the alluvial deposits, including the alluvial deposits within Schaft Creek, an abandoned channel east of Schaft Creek, within the saddle area to the east of the deposit, and the within Skeeter Creek Valley. These aquifers are also the location of groundwater discharge, with recharge occurring from the upslope areas.

There are three groundwater divides to note within the project area including:

- Near the eastern boundary of the deposit, in the saddle area
 - Groundwater over most of the deposit and the saddle flows towards Schaft Creek, while groundwater in the eastern portion of the saddle flows towards Mess Creek
- At the southern extent of Skeeter Creek (the south TSF embankment alignment)
 - Groundwater south of the proposed south TSF embankment flows towards Mess Creek while groundwater north of that location flows towards the north.
- Along the proposed northwest TSF embankment alignment
 - Groundwater west of the northwest TSF embankment flows west towards Schaft Creek and groundwater east of the northwest TSF embankment flows to the east towards Skeeter Creek.

6.2 <u>GROUNDWATER QUALITY SUMMARY</u>

The groundwater in the project area is generally slightly alkaline to alkaline. For high *in situ* pH values, in the range of 11 and above, ammonia concentrations were noted to exceed the guidelines. The increased ammonia concentration could be a result of pH, as the solubility of ammonia in water increases with alkalinity. The wells with the highest pH were: RES08-01A, RES08-01B, RES08-02A, RES08-04A and RES08-4B. These wells are located in the deposit area and Schaft Creek Valley. The water quality of these samples does not represent groundwater conditions. The high pH is likely the result of grout contamination during well installation.

The groundwater also has a high buffering capacity throughout the site with alkalinity values greater than 20 mg/L.

Sulphate exceedances were noted in the deep wells with the exception of RES08-04A and RES08-05A. Fluoride exceedances were noted in all wells within Skeeter Creek Valley with the exception of RES08-6B.

Dissolved metals exceedances in wells not contaminated by grout were noted for: aluminium, arsenic, cadmium, copper, iron, and silver. Samples with several exceedances were turbid.

There were also many exceedances for total metals including aluminium, arsenic, cadmium, cobalt, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, vanadium and zinc. The most common exceedances were in aluminium, copper, iron, silver and vanadium. The total metals exceedances could be the result of high TSS and turbidity in samples collected in 2008. There was no testing for total metals in 2009 and, therefore, no data to compare total metals results.

The groundwater facies in the deposit, waste dump and plant site areas are calcium-magnesium to calcium-sodium and bicarbonate to bicarbonate-sulphate. The groundwater facies for the north and west TSF embankment areas are sodium-calcium and bicarbonate-sulphate to sulphate-bicarbonate, and the groundwater facies for the south embankment areas are magnesium-calcium and bicarbonate-sulphate.

The quality assurance/quality control resulted in rejection of two parameters in the 2008 data sample set: dissolved barium and dissolved molybdenum. Cation and anion balances completed on both data sets exceeded the 10% error for nine samples. The 2009 data were verified by the laboratory; however, the 2008 data was too old to reanalyze. New data controls have been put in place using the KP integrated management system FULCRUM to calculate cation-anion balances immediately upon receipt of the sample set to ensure that data analysis is correct.

6.3 <u>CONCLUSIONS</u>

This baseline study provides an understanding of the groundwater regime within the study area and addresses the:

- Location of aquifers and aquitards
- Rate and direction of groundwater flow
- Expected interaction of groundwater with surface water, and
- Water quality characteristics of groundwater.

The information presented in this report is adequate to support a feasibility level design of the project, although further study is required to complete the hydrogeologic characterization of the site to a level necessary for final design.

SECTION 7.0 - REFERENCES

- Associated Geosciences (November 2009). <u>Skeeter Valley Scaft Creek, British Columbia, Summer</u> 2008.
- BC Environment (1992). <u>Biophysical Soil Landscapes Inventory of the Stikine_Iskut Area (Mapsheets</u> <u>104F, 104G, and Parts of 104B and 104H).</u>
- BC Integrated Land Management Bureau Resource Inventory Standards Committee (1997). <u>Ambient</u> <u>Fresh Water and Effluent Sampling Manual.</u>
- BGC Engineering Incorporated (November 2009). <u>Access Route Terrain and Geohazards Mapping –</u> <u>Phase 2 Report: Draft.</u>
- DST Consulting Engineers Incorporated (January 2008). <u>Draft Pre-Feasibility of Tailings Dam Options –</u> <u>Schaft Creek Project, British Columbia.</u>
- DST Consulting Engineers Incorporated (March 2008). <u>Factual Preliminary Geotechnical Investigation</u>, <u>Open Pit Area – Schaft Creek Project</u>.
- Ewanchuk, S., Fisher, P. and Hanych, W. (March 2007). <u>2006 Diamond Drill Report Schaft Creek</u> <u>Property – Nothwestern British Columbia.</u>
- Fisher, P. and Hanych, W. (March 2006). <u>2005 Diamond Drill Report Schaft Creek Property –</u> <u>Nothwestern British Columbia.</u>
- Knight Piésold Limited (July 2008). <u>Schaft Creek Project Report on the Pre-Feasibility Design of the</u> <u>100,000 Tonnes Per Day Tailings Storage Facility</u>. Ref. No. VA101-329/3-1 Rev. 2.
- Knight Piésold Limited (January 2010). <u>Schaft Creek Project 2008 Geotechnical Investigation</u>. Ref. No. VA101-329/7-1 Rev. 0.
- Logan, J., Drobe, J., Koyanagi, V, and Elsby, D. (1997). <u>Geology of the Forrest Kerr-Mess Creek Area,</u> <u>Northwestern British Columbia (104B/10, 15 and 104G/2 and 7W.</u>
- Rescan Tahltan Environmental Consultants (March 2007). <u>Schaft Creek Project Meteorology Baseline</u> <u>Report.</u>
- Rescan Tahltan Environmental Consultants (March 2008). <u>Schaft Creek Project Draft Preliminary</u> <u>Baseline Report.</u>
- Rescan Environmental Services Limited (email from Shane Uren received December 4, 2009). Schaft Creek – 2008 Water Quality Results and Hydrogeological Summary.

- Ryder, J. (1984). <u>Terrain Inventory for the Stikine-Iskut area: (NTS 104F, 104G and parts of 104B and 104H).</u>
- Ruthrie Enterprises Limited (July 2006). <u>Schaft Creek Copper-Molybdeum Deposit, NW BC –</u> <u>Geotechnical Investigation at Schaft Creek.</u>
- Samuel Engineering Incorporated (December 2007). <u>Preliminary Economic Assessment on the</u> <u>Development of the Schaft Creek Project Located in Northwest British Columbia, Canada.</u>

Spooner, I. (no date). Airphoto Interpretation of the Schaft Creek – Mt LaCasse Region.

SECTION 8.0 - CERTIFICATION

This report was prepared, reviewed and approved by the undersigned.

Prepared: Alexis McPherson FOR Amber Lapshinoff Staff Engineer Staff Scientist Reviewed: H. Rod Smith, P.Eng Specialist Associate K. J. BROUWER BRITISH Lume Approved: NGINE Ken Brouwer, P.Eng. N. TXPRIL Managing Director

This report was prepared by Knight Piésold Ltd. for the account of Copper Fox Metals Inc. The material in it reflects Knight Piésold's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, is the responsibility of such third parties. Knight Piésold Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions, based on this report. This numbered report is a controlled document. Any reproductions of this report are uncontrolled and may not be the most recent revision.

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF HYDROGEOLOGICAL INFORMATION

			Copper Fox			Coordinates		Drill	Total	Depth to	Depth to	Piezometic Head	
Consultant	Year	Drillhole ID	Drillhole ID	Location of Drillhole	Northing	Easting	Elevation	Туре	Length ⁽¹⁾	Bedrock ⁽²⁾⁽³⁾	Groundwater ⁽²⁾	Plezometic Head	
			2111101012		(m)	(m)	(m)		(m)	(m)	(m)	(m)	Fr
?	2007	?	07CF304	Open Pit Area	6,359,400	379,650		?	139.9	4.6	-	-	
DST	2007	A-ND-07-01	?	North TSF Dam Area	6,374,500	382,127	820 ⁽⁴⁾	HQ/NQ	137.5	39.8	3.0	817.0	
DST	2007	A-ND-07-02	?	North TSF Dam Area	6,374,497	381,836	800 ⁽⁴⁾	HQ/NQ	125.0	22.9	artesian (>2.6 m.a.g.s.)	>802.6	
DST	2007	A-ND-07-03	?	North TSF Dam Area	6,374,497	381,513	815 ⁽⁴⁾	HQ/NQ	101.8	2.4	0.2	814.8	
DST	2007	A-NWD-07-01	?	Northwest TSF Dam Area	6,373,335	380,516	900 ⁽⁴⁾	HQ/NQ	113.4	12.8/13.3 ⁽⁸⁾	artesian (>0.5 m.a.g.s.)	>900.5	
DST	2007	A-SD-07-01	?	South TSF Dam Area	6,367,246	382,879	900 ⁽⁴⁾	HQ/NQ	120.5	21.2/22.0 ⁽⁸⁾	artesian (>0.8 m.a.g.s.)	>900.8	
DST	2007	A-SD-07-02	?	South TSF Dam Area	6,367,257	382,604	900 ⁽⁴⁾	HQ/NQ	101.3	4.0	5.0	895.0	
DST	2007	A-SD-07-03	?	South TSF Dam Area	6,367,245 ⁽⁵⁾	382,328 ⁽⁵⁾	900 ⁽⁵⁾	HQ/NQ	92.7	4.1	artesian (1.5 m.a.g.s.)	901.5	
DST	2007	PO-01-07	07CF308	Open Pit Area	6,358,834 ⁽⁵⁾	379,626 ⁽⁵⁾	929	HQ/NQ	62.0	9.4	artesian (0.5 m.a.g.s.)	929.5	
DST	2007	PO-02-07	07CF306	Open Pit Area	6,358,936 ⁽⁵⁾	379,094 ⁽⁵⁾	880	HQ/NQ	65.7	24.0	2.0	878.1	
DST	2007	PO-03-07	07CF309	Open Pit Area	6,358,959 ⁽⁵⁾	380,021 ⁽⁵⁾	955	HQ/NQ	57.3	10.5	1.0	954.0	
DST	2007	PO-04-07	07CF312	Open Pit Area	6,359,781 ⁽⁵⁾	380,614 ⁽⁵⁾	1170	HQ/NQ	89.0	3.0	6.2	1163.8	
DST	2007	PO-05-07	07CF313	Open Pit Area	6,360,183 ⁽⁵⁾	380,278 ⁽⁵⁾	1157	HQ/NQ	201.3	2.0	18.3	1138.7	
DST	2007	PO-06-07	07CF314	Open Pit Area	6,360,608 ⁽⁵⁾	379,977 ⁽⁵⁾	1092 ⁽⁵⁾	HQ/NQ	131.1	29.0	-	-	
DST	2007	PO-07-07	07CF315	Open Pit Area	6,361,023 ⁽⁵⁾	379,702 ⁽⁵⁾	1084	HQ/NQ	82.7	94.5	52.5	1031.6	
DST	2007	PO-08-07	07CF316	Open Pit Area	6,360,563 ⁽⁵⁾	380,437 ⁽⁵⁾	1353 ⁽⁵⁾	HQ/NQ	636.1	8.5	-	-	
KP	2008	KP08-01	08CF344	Open Pit Area	6,361,268	379,773	1196	HQ3	250.2	32.0	-	-	
KP	2008	KP08-02	08CF345	Open Pit Area	6,361,020	379,854	1157	HQ3	101.2	28.0	-	-	
KP	2008	KP08-03	08CF328	Open Pit Area	6,360,467	379,823	992	HQ3	285.9	23.5	4.3	987.7	
KP	2008	KP08-04	08CF341	Open Pit Area	6,360,244	380,282	1178	HQ3	542.4	9.5	-	-	
KP	2008	KP08-05	08CF347	Open Pit Area	6,359,807 ⁽⁶⁾	380,000 ⁽⁶⁾	980 ⁽⁶⁾	HQ3	463.6	8.5	artesian	>980.0	
KP	2008	KP08-06	08CF346	Open Pit Area	6,359,641	380,352	1078	HQ3	299.2	19.8	artesian	>1078.0	
KP	2008	KP08-07	08CF329	Open Pit Area	6,359,248	380,336	1047	HQ3	271.7	14.5	artesian	>1047.0	
KP	2008	KP08-08	08CF339	Open Pit Area	6,359,940	379,900	938	HQ3	199.3	10.4	20.0	918.0	
KP	2008	KP08-09	08CF338	Open Pit Area	6,360,367	379,574	920	HQ3	805.0	25.0	19.7	900.3	
KP	2008	KP08-10	08CF342	Open Pit Area	6,360,998	379,480	994	HQ3	223.7	27.1	-	-	
KP	2008	KP08-12	08CF389	Plant Site Area	6,359,933	381,776	1150	ODEX/HQ3	61.9	N/A	10.0	1140.1	
KP	2008	KP08-13	08CF387	Plant Site Area	6,360,071	381,404	1142	HQ3/NQ3	25.9	20.7	6.6	1135.8	
KP	2008	KP08-16	08CF363	Open Pit Area	6,359,903	379,445	876	ODEX/HQ2	62.5	13.7	2.8	873.4	
KP	2008	KP08-17	08CF364	Open Pit Area	6,360,803	379,041	865	ODEX/HQ3	55.8	12.2	3.5	861.9	
KP	2008	KP08-20	08CF336	Waste Dump Area	6,360,889	378,413	835	HQ3	76.2	N/A	1.5	833.7	

Completion Zone Hydrogeological Testing Performed From (m) To (m) 131.9 139.9 Two piezometers installed - no testing performed 18.7 26.4 1 FHT, 9 RHT ____ --9 RHT 1 FHT, 8 RHT ----6 RHT -7 FHT, 3 RHT --6 FHT -3 FHT, 6 RHT -------------5 VWP ---------____ 4 FHT --1 FHT -25.9 30.8 1 FHT in piezometer 23 PT, 6 FHT --24 PT, 3 RHT --34.0 37.2 1 PT, 2 FHT, 10 RHT 27.5 30.9 3 RHT 2 FHT, 4 RHT --47.4 51.0 1 RHT, 1 FHT in piezometer -1 FHT -44.8 48.8 5 FHT, 1 FHT in piezometer 21.8 25.8 1 RHT, 1 RHT in piezometer 58.5 62.2 1 PT, 3 RHT, 1 FHT in piezometer 52.6 55.8 2 PT, 2 RHT, 1 FHT in piezometer 12.2 16.8 1 FHT in piezometer

Print Apr/01/10 12:09:02

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF HYDROGEOLOGICAL INFORMATION

	×		Copper Fox			Coordinates		Drill	Total	Depth to	Depth to	Piezometic Head	Completi	on Zone	Print Apr/01/10 12:09:02
Consultant	Year	Drillhole ID	Drillhole ID	Location of Drillhole	Northing	Easting	Elevation	Туре	Length ⁽¹⁾	Bedrock ⁽²⁾⁽³⁾	Groundwater ⁽²⁾	()	F ara an (an)	T ₂ (m)	Hydrogeological Testing Performed
		KP08-21	08CF331	Wasta Dump Araa	(m)	(m)	(m)	ODEX	(m)	(m)	(m)	(m)	From (m)	To (m)	
KP	2008	KP08-21 KP08-22		Waste Dump Area	6,359,157	378,441	855 995 ⁽⁴⁾	HQ3	50.9 72.2	N/A 33.2	10.6	844.3	43.9	46.9	-
KP	2008		08CF335	Waste Dump Area	6,357,930	/					-	-	-	-	-
KP	2008	KP08-23	08CF333	Waste Dump Area	6,358,189	379,460	947	HQ3	150.6	3.7	1.2	945.6	-	-	2 PT, 6 RH
KP	2008	KP08-25	08CF380	North TSF Dam Area	6,374,073	382,129	824	ODEX/HQ3	59.7	22.3	9.8	814.6	56.1	59.7	1 PT, 1 FHT, 2 RHT, 1 FHT in piezometer
KP	2008	KP08-27	08CF381	North TSF Dam Area	6,374,151	381,687	794 ⁽⁷⁾	ODEX/HQ3	44.2	12.5	artesian (0.3 m.a.g.s.)	794.3	36.9	40.5	1 PT, 2 RHT, 1 RHT in piezometer
KP	2008	KP08-28	08CF382	North TSF Dam Area	6,374,164	381,387	825	ODEX/HQ3	47.0	13.7	artesian	>825	42.8	46.7	2 RHT, 1 RHT in piezometer
KP	2008	KP08-31	08CF384	Northwest TSF Dam Area	6,373,183	380,396	858	ODEX/HQ3	49.7	9.1	artesian	>858	45.1	49.4	1 PT, 2 FHT, 2 RHT, 1 RHT in piezometer
KP	2008	KP08-32	08CF385	Northwest TSF Dam Area	6,372,976	380,347	877	ODEX/HQ3	67.1	29.9	artesian	>877	63.4	67.1	1 PT, 2 FHT, 1 RHT, 1 RHT in piezometer
KP	2008	KP08-37A	08CF374A	South TSF Dam Area	6,367,157	382,039	892	ODEX/HQ3	54.6	35.4	13.8	878.6	31.1	35.1	4 FHT, 2 RHT, 1 FHT in piezometer
KP	2008	KP08-37B	08CF374B	South TSF Dam Area	6,367,154	382,039	893	ODEX/HQ3	67.4	35.4	13.7	879.0	62.5	66.7	1 RHT, 1 FHT in piezometer
KP	2008	KP08-38	08CF375	South TSF Dam Area	6,367,184	382,204	908	ODEX/HQ3	92.7	2.7	10.5	897.5	26.5	30.2	1 FHT, 7 RHT, 1 FHT in piezometer
KP	2008	KP08-40	08CF376	South TSF Dam Area	6,367,191	382,670	891	ODEX/HQ3	30.5	0.9	3.7	887.5	26.5	30.3	2 RHT, 1 FHT in piezometer
KP	2008	KP08-41	08CF378	South TSF Dam Area	6,367,178	382,867	885	ODEX/HQ3	29.0	21.6	1.6	883.1	17.1	20.7	1 PT, 2 FHT, 1 RHT, 1 FHT in piezometer
KP	2008	KP08-42	08CF373	South TSF Dam Area	6,366,806	382,167	882	ODEX/HQ3	59.7	27.7	3.3	878.3	56.1	59.7	1FHT, 2 RHT, 1 FHT in piezometer
KP	2008	KP08-45	08CF379	South TSF Dam Area	6,367,822	382,266	898	ODEX/HQ3	70.4	1.2	14.7	883.6	66.1	70.1	4 RHT, 1 FHT in piezometer
KP	2008	RES08-01A	08CF340A	Open Pit Area	6,359,940	379,718	908	ODEX/HQ3	50.3	4.7	1.8/1.8/2.6 ⁽⁹⁾	906.2/906.2/905.4	43.9	50.0	1 PT, 1 FHT, 2 RHT, 1 FHTand 1 RHT in piezometer
KP	2008	RES08-01B	08CF340B	Open Pit Area	6,359,939	379,718	908	ODEX/HQ3	15.2	4.7	0.6/2.2/3.5 ⁽⁹⁾	907.4/905.8/904.5	9.1	15.2	1 FHT and 1 RHT in piezometer
KP	2008	RES08-02A	08CF337A	Waste Dump Area	6,358,424	380,200	1028	HQ3	60.0	29.3	6.5/4.0/4.6 ⁽⁹⁾	1021.5/1024.0/1023.4	51.8	60.0	2 PT, 1 FHT, 1 RHT, 1 FHT and 1 RHT in piezometer
KP	2008	RES08-02B	08CF337B	Waste Dump Area	6,358,423	380,200	1028	ODEX/HQ3	28.0	N/A	4.0/7.1/8.0 ⁽⁹⁾	1024.0/1020.9/1020.0	23.8	28.0	1 FHT and 1 RHT in piezometer
KP	2008	RES08-03A	08CF330A	Waste Dump Area	6,360,095	378,645	843	HQ3	117.3	51.5	3.1/3.0/3.0 ⁽⁹⁾	839.9/840.0/840.0	106.4	117.3	3 PT, 1 FHT and 1 RHT in piezometer
KP	2008	RES08-03B	08CF330B	Waste Dump Area	6,360,096	378,646	843	ODEX	10.7	N/A	1.3/1.5/1.5 ⁽⁹⁾	841.7/841.5/841.5	7.3	10.7	1 FHT and 1 RHT in piezometer
KP	2008	RES08-04A	08CF332A	Waste Dump Area	6,358,509	378,682	865	HQ3	99.4	6.7	6.5/9.9/8.6 ⁽⁹⁾	858.5/855.1/856.4	86.3	99.4	7 PT, 1 FHT and 1 RHT in piezometer
KP	2008	RES08-04B	08CF332B	Waste Dump Area	6,358,508	378,687	864	HQ3	53.3	4.6	3.8/9.1/8.3 ⁽⁹⁾	860.2/854.9/855.7	48.2	53.3	1 FHT and 1 RHT in piezometer
KP	2008	RES08-05A	08CF388A	Plant Site Area	6,360,632	381,532	1136	ODEX/HQ3	27.4	13.7	artesian/artesian/no measurement ⁽⁹⁾	>1136.0/>1136.0/?	21.4	27.4	1 FHT, 1 RHT
KP	2008	RES08-05B	08CF388B	Plant Site Area	6,360,632	381,532	1136	ODEX	10.7	N/A	0.1/0.3/no measurement ⁽⁹⁾	1135.9/1135.7/?	6.4	10.4	1 FHT, 1 FHT in piezometer
KP	2008	RES08-06A	08CF383A	North TSF Dam Area	6,374,743	381,815	794	ODEX/HQ3	63.1	29.3	artesian (0.2 m.a.g.s.)/0.1/0 ⁽⁹⁾	794.2/793.9/794.0	59.4	63.1	1 PT, 2 FHT, 2 RHT in piezometer
KP	2008	RES08-06B	08CF383B	North TSF Dam Area	6,374,744	381,815	794	ODEX	15.2	N/A	0.1/0.2/1.2 ⁽⁹⁾	793.9/793.8/792.8	11.6	15.2	1 FHT and 1 RHT in piezometer
KP	2008	RES08-07A	08CF377A	South TSF Dam Area	6,366,778	382,819	886	ODEX/HQ3	39.9	10.7	artesian/artesian/artesian ⁽⁹⁾	>886/>886/>886	36.3	39.9	1 PT, 1 FHT, 1 RHT, 1 FHT in piezometer
KP	2008	RES08-07B	08CF377B	South TSF Dam Area	6,366,778	382,819	886	ODEX	9.1	N/A	2.4/artesian/artesian ⁽⁹⁾	883.6/>886/>886	4.5	9.1	1 FHT in piezometer
KP	2008	RES08-08A	08CF386A	Northwest TSF Dam Area	6,373,318	379,992	829	ODEX/HQ3	59.9	2.7	1.1/1.0/1.7 ⁽⁹⁾	827.9/828.0/827.3	56.8	59.9	1 PT, 1 FHT, 2 RHT, 1 FHT and 1 RHT in piezometer
KP	2008	RES08-08B	08CF386B	Northwest TSF Dam Area	6,373,318	379,992	829	ODEX/HQ3	11.0	2.7	0.6/0.5/1.5 ⁽⁹⁾	828.4/828.5/827.5	4.5	9.1	1 FHT and 1 RHT in piezometer

M:\1\01\00329\08\A\Report\1- Hydrogeology\Tables\[Table 3.1.xls]Table 3.1

NOTES:

1. ALL HOLES ARE VERTICAL EXCEPT FOR PO-01-07 TO PO-07-07 AND KP08-01 TO KP08-10, KP08-22, KP08-38 AND KP08-45.

2. ALL DEPTH MEASUREMENTS ARE TAKEN WITH RESPECT TO GROUND SURFACE AND INDICATE ACTUAL DEPTH.

3. SEVERAL DRILLHOLES DID NOT CONTACT BEDROCK ARE INDICATED BY "N/A".

4. ELEVATION ESTIMATED FROM DRILLHOLE LOCATION AND TOPOGRAPHIC MAPS.

5. COORDINATE ESTIMATED FROM THE 2007 SITE INVESTIGATION DRILLHOLE PLAN.

6. KP08-05 (08CF347) WAS NOT SURVEYED. THE COORDINATES PROVIDED ARE THE PLANNED COORDINATES AND THE ELEVATION WAS ESTIMATED FROM TOPOGRAPHY .

7. KP08-27 (08CF381) WAS NOT SURVEYED, HOWEVER THE DRILL PAD WAS LOCATED AT THE SAME ELEVATION AS RES08-06 A/B.

8. INCONSISTENCY IN REPORTING - BOTH VALUES GIVEN.

9. WATER LEVELS MEASURED AT DIFFERENT TIMES; FIRST MEASUREMENT INDICATES THE WATER LEVEL AFTER PIEZOMETER INSTALLATION, SECOND MEASUREMENT INDICATES THE WATER LEVEL PRIOR TO WELL DEVELOPMENT BY RESCAN (2008), THIRD MEASUREMENT INDICATES THE WATER LEVEL PRIOR TO WATER QUALITY SAMPLING BY KP (2009).

0	23NOV'09	ISSUED FOR REPORT VA101-329/8-1	AM	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

Print Apr/01/10 12:09:02

COPPER FOX METALS INC. SCHAFT CREEK PROJECT SUMMARY OF HYDROGEOLOGICAL TESTING

[<u> </u>	1	1		<u> </u>		Deeker Tee	(1.unon)				alling/Diains	- Head Teat				Diezem	ator lufor	mation		Print Apr/08/10 13:22:39
Consultant	Year	Drillhole ID	Copper Fox	Location of Drillhole			Packer Test r Zone	Hydraulic			Test	alling/Rising	Hydraulic			Comple	Plezon	Depth to	Hydraulic Conductivity		Notes
			Drillhole ID		Test Number	From (m)		Conductivity (cm/s)	Geology	Test Number	From (m)		Conductivity ¹ (cm/s)	Geology	Test Number	From (m)		Water ² (m)	(Rising/ Falling Head) ¹ (cm/s)	Geology	
?	2007	?	07CF304	Open Pit Area		-	-	-	-	-	-	-	-	-	-	131.9 18.7	139.9 26.4	-		Granodiorite Breccia	Two piezometers installed by Rescan - no testing performed.
										1 2	3.5 9.5	3.5 9.5	6.9E-05 2.6E-04	Overburden Overburden							
										3	12.5 18.6	12.5 18.6	2.5E-04 3.6E-02	Overburden Overburden	-						
DST	2007	A-ND-07-1	?	North TSF Dam Area		-	-		-	7 9	25.0 31.1	25.0 31.1	1.4E-02 1.2E-02	Overburden Overburden	-	-	-	3.0			
										12 13 14	37.2 40.9 59.2	37.2 40.9 59.2	N/A 2.6E-03 1.9E-03	N/A Bedrock Bedrock	-						
										14 15 16	59.2 71.3 92.7	59.2 71.3 92.7	1.9E-03 1.2E-03	Bedrock Bedrock	-						
										1 2	3.7	3.7	1.9E-04 7.5E-05	Overburden Overburden	-						
										3 4	9.75 18.6	9.75 18.6	3.0E-05 N/A	Overburden N/A							
DST	2007	A-ND-07-2	?	North TSF Dam Area		-	-	-	-	5	25 37.8	25 37.8	1.0E-04 3.0E-07	Bedrock (fractured) Bedrock	-	-	-	Artesian	-	-	
										8	65.25 98.75	65.25 98.75	4.7E-05 N/A	Bedrock N/A	-						
										1 2	0 3.9	0 3.9	N/A 2.9E-05	N/A Bedrock							
										3 4	7.3 19.5	7.3 19.5	2.3E-05 1.3E-05	Bedrock Bedrock							
DST	2007	A-ND-07-3	?	North TSF Dam Area	-	-	-	-	-	5	31.7 40.85	31.7 40.85	1.5E-05 2.8E-05	Bedrock Bedrock	-	-	-	0.2	-		
										7 8	56.1 65.25	56.1 65.25	6.8E-06 4.5E-04	Bedrock Bedrock	-						Very high hydraulic conductivity measurement - difficult to obtain accurate test results of this
										9	86.6 3.05	86.6 3.05	1.1E-03 5.0E-02	Bedrock Overburden							magnitude.
DST	2007	A-NWD-07-1	?	West TSF Dam Area		-	-	-	-	3 5	6.1 12.8	6.1 12.8	3.2E-02 4.7E-05	Overburden Bedrock	-	-	-	Artesian	-	-	
										6 7	25 43.3	25 43.3	3.7E-05 7.6E-05	Bedrock Bedrock	-						
										8	58.55 4.19	58.55 4.19	3.0E-05 2.7E-03 9.5E-02	Bedrock Overburden							
										2 3	10.26 14.34	10.26 14.34	7.9E-02	Overburden Overburden							Very high hydraulic conductivity measurement - difficult to obtain accurate test results of this
DST	2007	A-SD-07-1	?	South TSF Dam Area	-	-	-	-	-	4	19.81 25.9	19.81 25.9	1.9E+03 1.5E-03	Overburden Bedrock	-	-	-	Artesian	-		magnitude.
										6A 6B	38.1 38.1	38.1 38.1	1.4E-03 2.8E-05	Bedrock Bedrock	-						
										7 8	59.45 77.75	59.45 77.75	4.0E-05 1.8E-03	Bedrock Bedrock	-						
	-									9 1 2	105.2 3.08	105.2 3.08	1.8E-03 N/A 5.0E-03	Bedrock N/A Bedrock							
DST	2007	A-SD-07-2	?	South TSF Dam Area			-	-	-	2 3 4	6.4 12.55 21.6	6.4 12.55 21.6	5.0E-03 3.8E-03 4.4E-04	Bedrock Bedrock Bedrock	-	-	-	5.0	-		
										4 5 6	21.6 33.8 55.15	21.6 33.8 55.15	4.4E-04 3.9E-03 5.7E-04	Bedrock Bedrock Bedrock	-						
										6 1 2	55.15 2.55 5.2	55.15 2.55 5.2	5.7E-04 6.1E-02 N/A	Overburden N/A							
										3A 3B	5.2 14.35 14.35	5.2 14.35 14.35	2.9E-05 2.1E-04	Bedrock	-						
DST	2007	A-SD-07-3	?	South TSF Dam Area		-		-	-	4 5	24.35 35.65	24.35 35.65	2.3E-04 4.4E-04	Bedrock Bedrock	-		-	Artesian			
										6 7	44.8 57	44.8 57	2.4E-03 2.6E-03	Bedrock Bedrock	-						
					1					8 FHT01-02	69.2 135.9	69.2 137.5	2.7E-03 8.2E-04	Bedrock Andesite							No standpipe piezometer installed as rods were stuck in the hole.
KP	2008	KP08-01	08CF-344	Open Pit Area		-	-	-	-	FHT01-03	169.5	171.0	8.6E-05	Andesite	-	-	-		-		Water level during failing head test dropped too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data. Water level during failing head test dropped too slowly to complete the test, hydraulic
										FHT01-04 FHT01-05	186.2 87.3	187.8 195.4	9.5E-05 2.6E-06	Andesite Andesite							conductivity results were extrapolated from existing data. Packer tests were not possible due to the highly fractured/gouged nature of the rock.
KP KP	2008 2008	KP08-02 KP08-03	08CF-345 08CF-328	Open Pit Area Open Pit Area	•	-	-	-	-	FHT02-01	83.3	89.9	1.3E-04	Sedimentary and Volcaniclastic	- FHT03-01	- 25.9	- 30.8	- 4.3	- 4.0E-05	- Augite Porphyry	No standpipe piezometer installed. Static water level estimated.
					PT04-01	85.2	100.5	6.6E-05	Andesite	FHT04-01	30.3	33.4	6.1E-04	Andesite							Standpipe piezometer damaged during casing removal and unrecoverable. Static water level estimated.
					PT04-02 PT04-03	100.5 115.7	115.7 131.0	4.8E-05 1.2E-04	Augite Porphyry Andesite	FHT04-02 FHT04-03	62.3 65.4	65.4 68.4	>10.3	Andesite	-						Water level fell during falling head test too quickly to take readings and it was not possible to fil the rods for a rising head test, indicating high hydraulic conductivity. ⁵
					PT04-04	131.0	146.2	2.2E-05	Andesite	FHT04-04	80.6	83.7	>10 ⁻³	Andesite							Water level fell during falling head test too quickly to take readings and it was not possible to fil the rods for a rising head test, indicating high hydraulic conductivity ⁵ .
					PT04-05 PT04-06	146.2 222.4	161.4 237.7	3.9E-05 5.6E-05	Andesite Andesite	FHT04-05 FHT04-06	83.7 417.4	86.7 420.5	3.8E-03 5.3E-04	Andesite Andesite							Static water level estimated.
					PT04-07 PT04-08	237.7 252.9	252.9 268.1	3.4E-05 6.7E-05	Andesite Andesite	-	-	-	-	-	-						
					PT04-09 PT04-10	268.1 283.4	283.4 298.6	3.4E-07 3.7E-05	Andesite Andesite	-	-	-	-	-							
KP	2008	KP08-04	08CF-341	Open Pit Area	PT04-11 PT04-12	298.6 313.9	313.9 329.1	5.6E-05 2.6E-07	Andesite Andesite	-	-	-	-	-	-	-	-	-	-	-	
					PT04-13 PT04-14	329.1 359.6	344.4 374.9	4.2E-07 4.3E-05	Andesite Andesite	-	-	-	-	-							
					PT04-15 PT04-16	374.9 420.6	390.1 435.8	4.3E-07 2.5E-06	Andesite Andesite	-	-	-	-	-							
					PT04-17 PT04-18	435.8 454.1	451.1 469.4	2.0E-06 6.8E-07	Andesite Andesite	-	-	-	-	-	-						
					PT04-19 PT04-20 PT04-21	466.3 481.6	481.6 496.8	4.9E-06 4.1E-05	Andesite Andesite	-	-	-	-	-							
					PT04-21 PT04-22 PT04-23	496.8 512.0 527.3	512.0 527.3 542.5	4.4E-05 <10 ⁻⁷ 5.1E-05	Andesite Andesite Andesite	-	-	-		-	-						No flow into test inverval for the Packer test.
					PT05-01	23.9	39.2	<10'7	Andesite	RHT05-01	100.1	103.2	9.8E-05	Andesite							Hole is artesian (-3.4 L/min) so casing was left in hole and no well was installed. No flow into test interval for the Packer test.
					PT05-02 PT05-03	42.2 57.5	57.5 72.7	4.9E-06	Sedimentary and Volcaniclastic Sedimentary and	RHT05-02 RHT05-03	115.4 255.6	118.4 270.8	6.7E-05	Andesite Sedimentary and	-						Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
					PT05-03 PT05-04	72.7	88.0	5.6E-07	Volcaniclastic Sedimentary and Volcaniclastic		-	-	3.5E-05 -	Volcaniclastic	-						
					PT05-05 PT05-06	118.5 133.7	133.7 148.9	3.0E-07 3.2E-07	Andesite Andesite		-		-	-							
					PT05-07 PT05-08	148.9 164.2	164.2 179.4	N/A 7.5E-07	Andesite Andesite	-	-	-	-	-	-						Poor Packer test results.
					PT05-09 PT05-10	179.4 194.7	194.7 209.9	N/A 3.6E-07	Andesite Andesite	-	-	-	-	-							Poor Packer test results.
KP		KP08-05	08CF-347		PT05-11 PT05-12	209.9 225.2	225.2 240.4	N/A 1.7E-07	Andesite Andesite	-	-	-	-	-							Poor Packer test results.
KP	2008	KP08-05	080F-347	Open Pit Area	PT05-13 PT05-14	240.4 255.6	255.6 270.9	N/A <10 ^{.7}	Andesite Sedimentary and Volcaniclastic	-	-	-	-	-	-	-	-	Artesian	-	-	Poor Packer test results. No flow into test inverval for the Packer test.
					PT05-15	270.9	286.1	5.4E-07	Sedimentary and Volcaniclastic		-	-	-	-							
					PT05-16 PT05-17	286.1 301.4	301.4 316.6	3.9E-07	Sedimentary and Volcaniclastic Sedimentary and	-	-	-	-	-	-						No flow into test inverval for the Packer test.
					PT05-18	316.6	331.9	4.0E-07	Volcaniclastic Sedimentary and Volcaniclastic	-	-	-	-	-							
					PT05-19 PT05-20	331.9 347.1	347.1 362.4	6.2E-07 1.5E-06	Andesite Andesite	-	-	-	-	-							
					PT05-21 PT05-22	362.4 377.6	377.6 408.1	3.3E-07 6.2E-07	Andesite Andesite	-	-	-	-	-							
					PT05-23 PT05-24	408.1 438.6	438.6 463.7	3.1E-07 8.1E-07	Andesite Andesite	-	-	-	-	-	-						Poor Packer tast regulte. Elous rato in
										FHT06-01 RHT06-01	54.7 70.0	57.8 73.0	1.7E-03 1.8E-04	Andesite Andesite							Poor Packer test results. Flow rate is -0.05 L/min (casing is set above standpipe, so flow rate estimated).
										FHT06-02 RHT06-03	88.2 103.5	91.3 106.5	8.4E-05 4.0E-04	Andesite Andesite							
KP	2008	KP08-06	08CF-346	Open Pit Area	PT06-01	27.3	42.5	N/A	Andesite	RHT06-04 RHT06-05	118.7 137.0	121.8 140.1	1.1E-03 1.2E-03	Andesite Andesite	-	34.0	37.2	Artesian	-		
										RHT06-06 RHT06-07	152.3 169.0	155.3 172.1	3.1E-04 3.1E-04	Andesite Granodiorite	-						
										RHT06-08 RHT06-09	182.7	185.8 201.0	7.6E-04 3.4E-04	Dyke Andesite							
										RHT06-10 RHT06-11	213.2 228.5	216.3 231.5	4.8E-04 7.2E-04	Andesite Andesite							Flow rate <0.0051/min. Water lavel during drive board test sees too at
KP	2008	KP08-07	08CF-329	Open Pit Area	· ·	-	-		-	RHT07-01 RHT07-02	236.4 251.6	239.4 254.7	5.4E-05 1.1E-04	Augite Porphyry Augite Porphyry	-	27.5	30.9	Artesian	-		Flow rate <0.005 L/min. Water level during rising head test rose too slowly to complete the test hydraulic conductivity results were extrapolated from existing data. Static water level estimated.
										RHT07-03 RHT08-01	266.9 39.3	269.9 42.4	2.2E-04 8.2E-06	Augite Porphyry Dyke							Static water level estimated. No well was installed because Van Ruth Plugs required for the installation were not available and it was considered impractical to have the drill sit and wait for them to arrive. Water level
										RHT08-02	61.7	64.8	1.1E-05	Andesite							during rising head test rose too slowly to complete the test, h Water level during rising head test rose too slowly to complete the test, h Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
KP	2008	KP08-08	08CF-339	Open Pit Area	.	-	-		-	RHT08-03	77.0	80.0	5.2E-05	Augite Porphyry		-	-	20.0			Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
										RHT08-04	92.2	95.3 175.0	1.6E-04	Augite Porphyry Sedimentary and							Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data. Water level during rising head test rose too slowly to complete the test, hydraulic conductivity
										FHT08-01 FHT08-02	171.9 193.2	175.0 196.3	1.8E-05 1.3E-05	Volcaniclastic Sedimentary and Volcaniclastic							results were extrapolated from existing data. Water level during rising head test rose too slowly to complete the test, hydraulic conductivity
KP	2008	KP08-09	08CF-338	Open Pit Area		-	-		-	RHT09-01	61.0	64.0	<10 ⁻⁷	Granodiorite	FHT09-01	47.4	51.0	19.7	9.3E-05	Granodiorite	results were extrapolated from existing data. Water level did not rise for RHT09-01, indicating low hydraulic conductivity ⁵ No packer tests were conducted as rock was too fractured. No standpipe piezometer was
KP	2008	KP08-10	08CF-342	Open Pit Area	-	-	-	-	-	FHT10-01 FHT12-01	9.0	129.2 9.1	7.9E-04	Granodiorite	-	-	-	-	-	-	installed because the rods became stuck in the hole and could not be removed. Static water level estimated. Bedrock was not reached and hole was ended in overburden.
KP	2008	KP08-12	08CF-389	Plant Site Area					-	FHT12-01 FHT12-02 FHT12-03	9.0 24.3 35.1	9.1 24.4 36.6	2.8E-04 9.6E-05	Overburden Overburden Overburden	FHT12-06	44.8	48.8	10.0	2.7E-04	Overburden	
										FHT12-04 FHT12-05	54.1 60.9	54.2 61.0	3.2E-03 3.7E-03	Overburden Overburden	-						
KP	2008	KP08-13	08CF-387	Plant Site Area		-	-	•	-	RHT13-01 RHT16-01	22.9	24.4	2.7E-03	Dyke	RHT13-02	21.8	25.5	6.6	2.9E-05	Dyke	Water leaking from Packer test. Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data. Static water level
KP	2008	KP08-16	08CF-363	Open Pit Area	PT16-01	19.8	35.1	FAILED	Andesite	RHT16-01 RHT16-02	25.9 35.1	29.0 38.1	2.0E-05 7.6E-05	Andesite	FHT16-01	58.5	62.2	2.8	1.0E-07	Andesite	estimated. Water level during rising head test rose too slowly to complete the test, hydraulic conductivity
										RHT16-03	50.3	53.3	1.1E-07	Andesite							results were extrapolated from existing data. Static water level estimated. Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data. Static water level estimated.
KP	2008	KP08-17	08CF-364	Open Pit Area	PT17-01 PT17-02	18.3 45.7	33.5 54.9	<10 ^{.7} FAILED	Granodiorite Granodiorite	RHT17-01 RHT17-02	27.4 35.1	30.5 36.6	2.2E-04 1.4E-05	Granodiorite Granodiorite	FHT17-01	52.6	55.8	3.5	8.6E-07	Granodiorite	No flow into test inverval for the Packer test. Water leaking from Packer test. Water level during rising head test rose too slowly to complete
u	ı	n	. I		·	l			1				Page 1 of 2				1	ı	L.		the test, hydraulic conductivity results were extrapolated from existing data.

COPPER FOX METALS INC. SCHAFT CREEK PROJECT SUMMARY OF HYDROGEOLOGICAL TESTING

	<u> </u>	1			1		<u> </u>								1						Print Apr/08/10 13:22:3
			Correct T				Packer Te	st (Lugeon)			Fa	uung/Risin	ng Head Test				Piezon	neter Infor	Hydraulic		1
Consultant	Year	Drillhole ID	Copper Fox Drillhole ID	Location of Drillhole	Test Numbe	Pa	cker Zone	Hydraulic Conductivity	Geology	Test Number	Test 2	Zone	Hydraulic Conductivity ¹	Geology	Test Number	Complet	tion Zone	Depth to Water ²	Conductivity (Rising/ Falling	Geology	Notes
						From (m) To (m)	(cm/s)			From (m)	To (m)	(cm/s)	ł		From (m)	To (m)	(m)	Head) ¹ (cm/s)		
KP	2008	KP08-20	08CF-336	Waste Dump Area	-	-	-	-	-	•	-	-	-	•	FHT20-01	12.2	16.8	1.5	>10 ⁻³	No Recovery	Water drained out of the standpipe too quickly to fill, could not complete falling head test. No packer tests were conducted as all drilling was in overburden. Could not fill well for falling
KP	2008	KP08-21	08CF-331	Waste Dump Area	-	-	-	-	-	•	-	-	-	-	FHT21-01	43.9	46.9	10.6	>10 ⁻³	No Recovery	head test, water level dropped too quickly5
KP	2008	KP08-22	08CF-335	Waste Dump Area	- PT23-01	- 11.9	- 18.0	- 2.6E-04	- Andesite	- RHT23-01	- 64.0	- 64.0	- 2.0E-02	- Andesite	-	-	-	-			No piezometer installled as the hole was dry. No piezometer required due to artesian conditions. Water level re-measured in September a
					PT23-02	30.2	34.7	FAILED	Andesite	RHT23-02	75.9	75.9	3.1E-03	Andesite							1.2 m.b.g.s. Casing was left in hole. Water leaking from Packer test.
KP	2008	KP08-23	08CF-333	Waste Dump Area	PT23-03	40.4	46.5	FAILED	Granodiorite	RHT23-03	82.0	85.0	1.5E-05	Andesite	-		-	1.2	-		Water level during rising head test rose too slowly to complete the test, hydraulic conductivit results were extrapolated from existing data. Static water level estimated. Packer system w leaking during test, results not valid.
					-	-	-	-	-	RHT23-04	106.0	106.1	2.2E-02 4.5E-04	Granodiorite	-						
					-	-	-	-	-	RHT23-05 RHT23-06	118.8 133.8	121.6 136.9	4.5E-04 6.5E-04	Andesite Andesite							
										FHT25-01	17.5	17.5	N/A	No Recovery							No flow into test inverval for the Packer test. Falling head test did not produce valid results, rods could not be raised to expose a sufficient test zone due to the hole sloughing in.
KP	2008	KP08-25	08CF-380	North TSF Dam Area	PT25-01	29.3	44.5	<10'7	Peridotite	RHT25-02	32.3	36.9	1.9E-05	Peridotite	FHT25-02	56.1	59.7	9.8	5.8E-08	Peridotite	Water level during falling head test fell too slowly to complete the test, hydraulic conductivity
										RHT25-01	56.7	59.7	1.1E-06	Peridotite							results were extrapolated from existing data. Water level during falling head test fell too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
										RHT27-01	22.9	25.9	9.9E-05	Granodiorite							No flow into test inverval for the Packer test. Water level in piezometer during rising head te rose too slowly to complete the test, hydraulic conductivity results were extrapolated from
KP	2008	KP08-27	08CF381	North TSF Dam Area	PT27-01	22.9	38.1	<10 ^{.7}	Granodiorite	RHT27-02	22.9	38.1	3.8E-05	Granodiorite	RHT27-03	36.9	40.5	-0.3	5.0E-07	Granodiorite	existing data.
										RHT28-01	19.8	24.4	7.5E-05	Granodiorite							Water level in piezometer during rising head test rose too slowly to complete the test, hydrau
KP	2008	KP08-28	08CF-382	North TSF Dam Area	-		-	-	-	RHT28-02	29.0	44.2	7.1E-04	Granodiorite	RHT28-03	42.8	46.7	Artesian	3.3E-05	Granodiorite	conductivity results were extrapolated from existing data. Flow rate is 0.0135 L/min.
										FHT31-01	9.1	9.1	6.3E-05	Overburden							Flow rate is 0.05 L/min. Water level in piezometer during falling head test fell too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.Packer
KP	2008	KP08-31	08CF-384	Northwest TSF Dam Area	PT31-01	22.3	37.5	FAILED	Granodiorite	FHT31-02	17.7	20.7	N/A	Granodiorite	RHT31-03	45.1	49.4	Artesian	8.6E-05	Granodiorite	failed due to water leaking out of the packer system. Falling head test did not produce valid results.
										RHT31-01 RHT31-02	34.4 42.1	39.0 48.2	1.4E-04 6.9E-05	Granodiorite Granodiorite							
				Northwest TSE Dam Area						FHT32-01	12.6	12.7	N/A N/A	Overburden							Flow rate is 0.033 L/min. Falling head test did not produce valid results.
KP	2008	KP08-32	08CF-385	Northwest TSF Dam Area	PT32-01	44.1	59.4	1.8E-05	Granodiorite	FHT32-02 RHT32-01	23.3 45.7	23.3 48.8	3.6E-04	Overburden Granodiorite	RHT32-02	63.4	67.1	Artesian	8.1E-05	Granodiorite	Falling head test did not produce valid results.
										FHT37A-01 FHT37A-02	11.4 17.5	11.4 17.5	1.3E-02 6.4E-03	Overburden Overburden	-						
										FHT37A-03	26.6	26.7	6.3E-03	Overburden Sedimentary and	1						
KP	2008	KP08-37A	08CF-374A	South TSF Dam Area	-	-	-	-	-	FHT37A-04	36.0	54.6	7.7E-05	Volcaniclastic Sedimentary and	FHT37A-05	31.1	35.1	13.8	3.1E-06	Overburden	
										RHT37A-01 RHT37A-02	42.0 51.5	42.1	1.9E-03 2.1E-05	Volcaniclastic Sedimentary and	-						Water level during rising head test rose too slowly to complete the test, hydraulic conductivit
KP	2008	KP08-37B	08CF-374B	South TSF Dam Area	-			-	-	RHT37A-02 RHT37B-01	51.5 44.5	47.6	2.1E-05 8.4E-05	Volcaniclastic Sedimentary and	FHT37B-01	62.5	66.7	13.7	3.5E-06	Sedimentary and	results were extrapolated from existing data. Water level during rising head test rose too slowly to complete the test, hydraulic conductivit
IM.	2000		5551-374B	Journ for Dalli Area		+ -		-	-					Volcaniclastic		02.3	30.7	13.7	3.32-00	Volcaniclastic	results were extrapolated from existing data. Water level during rising head test rose too slowly to complete the test, hydraulic conductivit
										RHT38-01	13.4	14.6	6.7E-06	Limestone	-						results were extrapolated from existing data. Packer system was leaking during test, results valid.
										RHT38-02 RHT38-03	13.1 40.5	25.3 43.6	5.2E-05 N/A	Limestone							Rising head test did not produce valid results.
										RHT38-04	46.6	51.2	N/A	Sedimentary and Volcaniclastic							Rising head test did not produce valid results.
KP	2008	KP08-38	08CF-375	South TSF Dam Area	PT38-01	13.1	25.3	FAILED	Limestone	FHT38-01	46.6	51.2	8.0E-05	Sedimentary and Volcaniclastic	FHT38-02	26.5	30.2	10.5	9.9E-07	Limestone	
										RHT38-05	2.7	52.7	1.6E-06	Limestone/ Sedimentary and							Water level during rising head test rose too slowly to complete the test, hydraulic conductivit results were extrapolated from existing data.
										RHT38-06	64.9	68.3	1.1E-04	Volcaniclastic Sedimentary and	-						· · · · · · · · · · · · · · · · · · ·
										RHT38-07	77.4	82.0	9.8E-05	Volcaniclastic Sedimentary and							
KP	2008	KP08-40	08CF-376	South TSF Dam Area				_	_	RHT40-01	13.7	15.2	2.2E-05	Volcaniclastic Limestone	FHT40-01	26.5	30.3	3.7	1.1E-06	Limestone	Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
N	2000	111 00-40	0001-070	South 151 Dall Alea			-		-	RHT40-02	19.8	24.4	8.4E-05	Limestone	111140-01	20.5	50.5	3.7	1.12-00	Linestone	Water level during falling head test fell too slowly to complete the test, hydraulic conductivity
										FHT41-01	7.9	7.9	2.3E-04	Overburden							results were extrapolated from existing data. Packer system was leaking during the test, res not valid.
KP	2008	KP08-41	08CF-378	South TSF Dam Area	PT41-01	22.9	30.0	FAILED	Limestone	FHT41-02	14.0	14.0	1.5E-04	Overburden	FHT41-03	17.1	20.7	1.6	4.8E-06	Overburden	Water level during falling head test fell too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
										RHT41-01	22.9	29.0	4.8E-06	Limestone							Water level during rising head test rose too slowly to complete the test, hydraulic conductivit results were extrapolated from existing data.
										FHT42-01	12.9	12.9	1.5E-03	Overburden							Water level during falling head test fell too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
KP	2008	KP08-42	08CF-373	South TSF Dam Area	-	-	-	-	-	RHT42-01	41.5	44.5	3.1E-05	Sedimentary and Volcaniclastic	FHT42-02	56.1	59.7	3.3	8.4E-07	Sedimentary and Volcaniclastic	Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
										RHT42-02	44.5	49.1	4.4E-05	Sedimentary and Volcaniclastic							Packer tests were attempted but failed due to equipment malfunction. Water level during risi
										RHT45-01	14.0	17.1	1.0E-05	Limestone							head test toos too slowly to complete the test, hydraulic conductivity results were extrapolate from existing data. Static water level estimated.
KP	2008	KP08-45	08CF-379	Northwest TSF Dam Area	-	-	-	-	-	RHT45-02	29.3	32.3	2.5E-03	Andesite	FHT45-01	66.1	70.1	14.7	1.9E-05	Limestone	Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data. Static water level estimated.
										RHT45-03	44.5	47.6	2.4E-03	Andesite							Water level during rising head test rose too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data. Static water level estimated.
										RHT45-04	59.7	62.8	N/A	Limestone							Rising head test did not produce valid results. Rising head test did not produce valid results. Packer test failed due to loss of water flow
10	0000	05000.044		0	DT 044 04			5 05 07		RHT-R01A-01	16.7	16.7	N/A	Veins	FHT-R01A-02	43.9	50.0	1.8	4.6E-07	Andesite	through packer system.
KP	2008	RES08-01A	08CF-340A	Open Pit Area	PT-01A-01	21.3	36.6	5.2E-07	Veins	FHT-R01A-01 RHT-R01A-02		38.1 38.1	<10 ⁻⁷ ≤10 ⁻⁶	Veins	RHT ³	43.9	50.0	3.1	3.2E-07	Andesite	Water level remained constant during falling head test, indicating low hydraulic conductivity? Water level during rising head test rose too slowly to complete the test, hydraulic conductivity
140	0000	05000.040	0005.0405	0						KHI-KUIA-02	32.0			vents	FHT-R01B-01	9.1	15.2	0.6	3.4E-07	Veins	results were extrapolated from existing data. Static water leve estimated.
KP	2008	RES08-01B	08CF-340B	Open Pit Area	-	<u> </u>	-	-	- Feldspar-Quartz	-	-	-	-	- Feldspar-Quartz	RHT ³	8.54	15.2	2.2	-	Veins	Water level during falling head test dropped too slowly to complete the test, hydraulic
KP	2008	RES08-02A	08CF-337A	Waste Dump Area	PT-R02A-01			1.2E-05	Porphyry Feldspar-Quartz	FHT-R02A-01		41.8	5.8E-06	Porphyry Feldspar-Quartz	FHT-R02A-02		60.0	6.5	2.5E-05	Porphyry Feldspar-Quartz	conductivity results were extrapolated from existing data.
	-				PT-R02A-02	2 44.8	52.4	3.0E-06	Porphyry	RHT-R02A-01	32.6	41.7	9.9E-05	Porphyry	RHT ³ FHT-R02B-01	51.8 23.8	60.0 28.0	13.8 4.0	1.7E-07 4.3E-07	Porphyry No Recovery	Water level during falling head test dropped too slowly to complete the test, hydraulic
KP	2008	RES08-02B	08CF-337B	Waste Dump Area	_ ·	-	-	-	-	-	-		-	-	RHT ³	23.8	28.0 28.7 ⁴	4.0 6.6	4.3E-07 6.9E-07 ⁴	No Recovery	conductivity results were extrapolated from existing data.
KP	2008	RES08-03A	08CF-330A	Waste Dump Area	PT-R03A-01 PT-R03A-02			FAILED	Granodiorite Granodiorite		_		-	-	FHT-R03A-01	106.4	117.3	3.1	3.7E-05	Granodiorite	Packer system was leaking during test, results not valid. Packer system was leaking during test, results not valid.
				Long Alba	PT-R03A-03 PT-R03A-03			1.8E-04	Granodiorite	1					RHT ³	106.4	117.3	3.1	3.9E-05	Granodiorite	
KP	2008	RES08-03B	08CF-330B	Waste Dump Area		-	-	-	-		-		-	-	FHT-R03B-01		10.7	1.3	>10 ⁻³	No Recovery	Could not fill well for falling head test, water level dropped too quickly, indicating high hydrau conductivity. ⁵
					PT-R04A-01	1 24.7	32.3	3.0E-04	Granodiorite						RHT ³	7.3	10.7	1.5	-	No Recovery	L
					PT-R04A-02 PT-R04A-02	2 36.9	45.6	2.0E-04 3.5E-04	Granodiorite Granodiorite]					FHT-R04A-01	86.3	99.4	6.5	3.3E-06	Granodiorite	
KP	2008	RES08-04A	08CF-332A	Waste Dump Area	PT-R04A-04	1 55.2	61.3	2.3E-04	Granodiorite	- 1	-		-	-							
					PT-R04A-06 PT-R04A-06			6.9E-04 FAILED	Granodiorite Granodiorite	1					RHT ³	86.3	99.4	9.8	3.5E-06	Granodiorite	Packer system was leaking during test, results not valid.
					PT-R04A-07			7.9E-06	Granodiorite	1					FHT-R04B-01	48.2	53.5	3.8	9.1E-06	Granodiorite	
KP	2008	RES08-04B	08CF-332B	Waste Dump Area	-	-	-	-	-	•	-		-	-	RHT ³	48.2	53.5 55.2 ⁴	3.8 9.5	9.1E-06 3.2E-06 ⁴	Granodiorite	
KP	2008	RES08-05A	08CF-388A	Plant Site Area		.				FHT14A-01	10.4	10.4	5.6E-07	Overburden	.	21.4	27.4	Artesian		Andesite	Calculated flow rate was -0.2 L/min. Water level during falling head test dropped too slowly complete the test, hydraulic conductivity results were extrapolated from existing data.
										RHT14A-01	16.8	18.3	9.4E-05	Andesite							
KP	2008	RES08-05B	08CF-388B	Plant Site Area	-	-	-	-	-	FHT14B-01 FHT-R06A-01	7.0 0.8	10.1 9.9	8.8E-03 9.3E-04	Overburden Overburden	FHT14B-02 RHT-R06A-01		10.4 63.1	0.1	2.3E-03 3.1E-05	Overburden Granodiorite	
KP	2008	RES08-06A	08CF-383A	North TSF Dam Area	PT-R06A-01	35.7	50.9	7.2E-07	Granodiorite	FHT-R06A-02		18.0	5.6E-07	Overburden	RHT ³	59.4	63.1	0.1	6.5E-06	Granodiorite	Water level during falling head test dropped too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data.
KP	2008	RES08-06B	08CF-383B	North TSF Dam Area	-	-	-	-	-		-				FHT-R06B-01 RHT ³	11.6	15.2 15.2	0.1	1.9E-03 1.9E-03	Overburden Overburden	
						-				FHT43A-01	10.0	10.1	3.4E-04	Overburden							Water level during falling head test dropped too slowly to complete the test, hydraulic conductivity results were extrapolated from existing data. Flow rate is _0.821 /min. Water fl
KP	2008	RES08-07A	08CF-377A	South TSF Dam Area	PT43A-01	24.7	39.9	FAILED	Limestone	RHT43A-01	24.7	39.9	3.4E-04 3.5E-05	Overburden	FHT43A-02	36.3	39.9	Artesian	1.6E-03	Limestone	conductivity results were extrapolated from existing data. Flow rate is ~0.82 L/min. Water fi was observed leaking from the casing during the packer test, results
KP	2008	RES08-07B	08CF-377B	South TSF Dam Area		-	-	-	-	- -		-	-	-	FHT43B-01	4.5	9.1	Artesian	3.4E-04	Overburden	Flow rate is -0.2 L/min.
										FHT44A-01	17.1	17.2	5.7E-05	Granodiorite	FHT44A-02	E0 1	50.0		0.05.00	Grand	No flow into test inverval for the Packer test. Water level during falling head test dropped to slowly to complete the test, hydraulic conductivity results were extrapolated from existing da
KP	2008	RES08-08A	08CF-386A	Northwest TSF Dam Area	PT44A-01	15.2	30.5	<10 ⁻⁷	Limestone	RHT44A-01	38.3	43.1	1.3E-05	Granodiorite	rn144A-02	56.4	59.9	1.1	9.9E-06	Granodiorite	Water level during rising head test rose too slowly to complete the test, hydraulic conductivity
										RHT44A-02	50.4	50.8	1.7E-04	Granodiorite	RHT ³	56.4	60.2 ⁴	1.0	1.3E-05 ⁴	Granodiorite	results were extrapolated from existing data. Water level during rising head test rose too slowly to complete the test, hydraulic conductivit results were extrapolated from existing data.
KP	2008	RES08-08B	08CE-386B	Northwest TSF Dam Area				1							FHT44B-01	7.2	10.7	0.6	2.6E-05	Granodiorite	

KP 2008 RES08-08B 08CF-386B Northwest TSF Dam Area	-				FH144B-01	1.2	10.7 (0.6	2.6E-05	Granodiorite	
					RHT ³	7.2	10.7 0	0.5	1.4E-05	Granodiorite	

M:\1\01\00329\08\A\Report\Rev 0\1- Hydrogeology\Tables\[Table 3.2.xls]Hydrogeological Summary

M:\1\01\00	329\08\A\Repo	rt/Rev 0\1- Hydrogeology\Tables\[Table 3.2.xls]H	drogeologica	I Summary					
NOTES:									
1. HYRAL	JLIC CONDUCT	IVITIES ESTIMATED USING THE HVORSLEV E	QUATION.						
2. VERTIC	AL DEPTH TO	WATER BELOW GROUND SURFACE.							
3. TESTS	3. TESTS PERFORMED BY RESCAN FOLLOWING WELL DEVELOPMENT.								
4. INCOR	RECT COMPLE	TION ZONE AND, THEREFORE, HYDRAULIC C	ONDUCTIVIT	TY RESULT	r.				
5. ASSUN	IED VALUES O	F HYDRAULIC CONDUCTIVITY BASED ON MAX	(IMUM AND I	MINIMUM C	CONDUCTI	IVITY OBSERVED ON SITE.			
0 07DEC'00 ISSUED WITH REPORT VA101-3298-1 AMM HRS KJB									
0			AMM	HRS	KJB				
REV	REV DATE DESCRIPTION PREPD CHKD APPD								

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF OVERBURDEN AND ROCKMASS HYDRAULIC CONDUCTIVITY

									Print Apr/08/10 13:08:3	
	Material			Hydraulic C	Conductivity (cm/s)		Standard Deviation	No. of Values	
	Walena	Minimum	Maximum	Mean	Median	25th percentile	75th percetile	Standard Deviation	NO. OF VALUES	
	Overburden ¹	4.3E-07	1.9E+03	4.4E+01	9.7E-04	1.4E-04	7.0E-03	2.9E+02	44	
Tertiary and Older	Dyke	8.2E-06	2.7E-03	8.6E-04	3.9E-04	2.4E-05	1.2E-03	1.2E-03	4	
Late Triassic	Vein Systems	1.0E-07	1.0E-06	4.9E-07	4.3E-07	2.8E-07	6.4E-07	3.8E-07	4	
	Peridotite	5.8E-08	1.9E-05	5.0E-06	6.2E-07	9.0E-08	5.6E-06	9.2E-06	4	
	Sedimentary and Volcaniclastic Rocks	1.0E-07	1.9E-03	1.2E-04	1.9E-05	1.2E-06	8.0E-05	4.0E-04	22	
Stuhini Group	Andesite	1.0E-07	2.0E-02	6.4E-04	5.1E-05	6.2E-07	4.0E-04	2.4E-03	73	
	Augite Porphyry	4.0E-05	2.2E-04	9.7E-05	5.4E-05	5.0E-05	1.3E-04	6.8E-05	7	
Liekmen Dethelith	Feldspar-Quartz Porphyry	1.7E-07	2.5E-04	4.6E-05	5.8E-06	3.7E-06	1.1E-05	9.9E-05	6	
Hickman Batholith	Granodiorite	1.0E-07	2.2E-02	6.0E-04	3.8E-05	9.1E-06	1.8E-04	3.2E-03	45	
Upper Carboniferous	Limestone	1.0E-07	1.6E-03	1.4E-04	1.0E-05	1.6E-06	3.5E-05	4.4E-04	13	
	All Rocks ¹		2.2E-02	5.7E-04	4.1E-05	4.9E-06	2.5E-04	2.2E-03	211	

M:\1\01\00329\08\A\Data\Hydrogeology Report\Physical\[Hydrogeological Summary rev C.xls]Hydrogeological Summary

NOTES:

1. INCLUDES HYDRAULIC CONDUCTIVITY VALUES FROM DST REPORT (DST, JANUARY 2008).

	0	10FEB'10	ISSUED WITH - REPORT VA101-329/8-1	AM	HRS	KJB
R	EV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF ROCKMASS HYDRAULIC CONDUCTIVITY BY LOCATION

Print Apr/01/10 12:16:50

Location			Hydraulic C	conductivity (cm/s)		Standard Deviation	No. of Values	
Location	Minimum	Maximum	Mean	Median	25th percentile	75th percetile	Standard Deviation	NO. OF VALUES	
Open Pit	1.0E-07	3.8E-03	2.1E-04	3.6E-05	5.8E-07	1.2E-04	5.0E-04	94	
Waste Dumps	1.7E-07	2.2E-02	1.7E-03	3.9E-05	3.5E-06	3.0E-04	5.4E-03	29	
Plant Site	2.9E-05	2.7E-03	9.2E-04	9.4E-05	6.2E-05	1.4E-03	1.5E-03	3	
TSF - North Embankment	5.8E-08	2.6E-03	3.6E-04	3.0E-05	6.8E-06	1.0E-04	7.0E-04	29	
TSF - Northwest Embankment	1.0E-07	2.5E-03	2.8E-04	4.2E-05	1.3E-05	8.5E-05	7.0E-04	22	
TSF - South Embankment	8.4E-07	5.0E-03	8.5E-04	8.4E-05	2.8E-05	1.6E-03	1.3E-03	39	
TSF	5.8E-08	5.0E-03	5.5E-04	4.7E-05	1.4E-05	4.4E-04	1.0E-03	90	

M:\1\01\00329\08\A\Report\1- Hydrogeology\Tables\[Table 3.4.xls]Table 3.4

[0	10FEB'10	ISSUED WITH - REPORT VA101-329/8-1	AM	HRS	KJB
	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

GROUNDWATER SAMPLE LOCATION DESCRIPTIONS

4/1/2010 12:17

Site Location	Easting	Northing	Site Description
RES08-1A	380587	6360572	Groundwater monitoring location in
RES08-1B	380587	6360572	the open pit area.
RES08-2A	380685	6358778	Groundwater monitoring location in
RES08-2B	380685	6358778	the waste dump area.
RES08-3A	378573	6360083	Groundwater monitoring location in
RES08-3B	378573	6360083	the waste dump area.
RES08-4A	378705	6358496	Groundwater monitoring location in
RES08-4B	378705	6358496	the waste dump area.
RES08-5A	381532	6360631	Groundwater monitoring location in
RES08-5B	381532	6360631	the plant site area.
RES08-6A	382226	6375784	Groundwater monitoring location in
RES08-6B	382226	6375784	the North TSF Dam area.
RES08-7A	382819	6366778	Groundwater monitoring location in
RES08-7B	382819	6366778	the South TSF Dam area.
RES08-8A	379992	6373318	Groundwater monitoring location in
RES08-8B	379992	6373318	the Northwest TSF Dam area.

M:\1\01\00329\08\A\Report\1- Hydrogeology\Tables\[Table 4.1.xls]Table 4.1

NOTES:

1. GPS COORDINATES ARE PROVIDED UTM NAD83 ZONE 9V.

0		30NOV'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
RE	V	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER QUALITY GUIDELINE EXCEEDANCES

Parameter	BCWQG ⁽²⁾ Limits	CCME ⁽³⁾ Limits	Site	Total Number of Samples	BCWQG Exceedances	Print Mar/23/10 10:0 CCME Exceedances
		Physical Parameters				
			RES08-1A RES08-1B	2	2	2
			RES08-1B RES08-2A	2 2	2 2	2
<i>In-situ</i> pH	6.5 - 9	6.5 - 9	RES08-4A	2	2	2
			RES08-4B	2	1	1
			RES08-6B	2	1	1
			RES08-1A	2	2	2
			RES08-1B	2	2	2
Lab pH	6.5 - 9	6.5 - 9	RES08-2A	2	2	2
			RES08-4A RES08-4B	2 2	2	2
			RES08-46 RES08-4A	2	2 2	2
			RES08-6A	2	2	
-	(4)		RES08-7A	2	2	
Fluoride	0.2 to 0.3 ⁽⁴⁾		RES08-7B	2	2	
			RES08-8A	2	2	
			RES08-8B	2	2	
			RES08-1A	2	2	
			RES08-1B	2	2	
			RES08-2A	2	1	
			RES08-3A	2	1	
Sulphate	100		RES08-6A	2	1	
•			RES08-7A	2	2	
			RES08-7B	2	2	
			RES08-8A	2	2	
			RES08-8B			
			RES08-0D RES08-1A	2 2	1	2
_		/	RES08-1A RES08-1B	2		2
Ammonia	0.681 to 28.3 ^(5,6)	0.0168 to 185 ^(5,6)	RES08-2A	2		2
			RES08-4A	2		2
		Dissolved Metals	4			
			RES08-2A	2	2	2
			RES08-2B			
				2	1	1
			RES08-4A	2	2	2
			RES08-4B	2	1	1
Aluminum	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2))} (8)	0.005 to 0.1 ⁽⁸⁾	RES08-5A	1	1	1
			RES08-5B	1	1	1
			RES08-6B	2	1	1
			RES08-8A	2	1	1
			RES08-8B	2	1	1
Arsenic	0.005	0.005	RES08-2B	2	2	2
			RES08-5A	1	1	1
Cadmium	10 ^{(0.86*(log([Hardness (Dissolved)]]))-3.2)/1000 (4)}	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)/1000 (4)}	RES08-5B	1	1	1
Caulinum	10	10.			-	
			RES08-8B	2	1	1
			RES08-1A	2		2
			RES08-1B	2		1
			RES08-2A	2		2
			RES08-2B	2		1
			RES08-4A	2		2
Copper	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁴⁾	0.002 to 0.004 ⁽⁴⁾	RES08-4B	2		1
		0.002 10 0.004	RES08-5A			
				1		1
			RES08-5B	1		1
			RES08-6A	2		1
			RES08-6B	2		1
			RES08-8A	2		1
			RES08-2B	2	1	1
			RES08-5A	1	1	1
Iron	0.35	0.3	RES08-6B	2	1	1
			RES08-8A	2	1	1
			RES08-8B	2	1	2
			RES08-1A	2	- · ·	2
			RES08-1A			
				2		2
Molybdenum	2	0.073	RES08-2A	2		2
	_		RES08-4A	2		2
			RES08-8A	2		1
			RES08-8B	2		1
			RES08-1B	2	1	2
			RES08-2A			
Selenium	0.002	0.001		2	1	2
			RES08-4B	2		1
			RES08-6B	2	1	1
Silver	0.0001 to 0.003 ⁽⁴⁾	0.0001	RES08-8A	2	1	1
	0.006					

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER QUALITY GUIDELINE EXCEEDANCES

					50000	Print Mar/23/10 10:05:5
Parameter	BCWQG ⁽²⁾ Limits	CCME ⁽³⁾ Limits	Site	Total Number of Samples	BCWQG Exceedances	CCME Exceedances
		Total Metals		•		
			RES08-1A	1		1
			RES08-1B RES08-2A	<u> </u>		1
			RES08-2B	1		1
			RES08-3A	1		1
			RES08-3B RES08-4A	1		1
Aluminum		0.005 to 0.1 ⁽⁸⁾	RES08-4A RES08-4B	1		1
		0.000 10 0.1	RES08-5A	1		1
			RES08-5B	1		1
			RES08-6A	1		1
			RES08-6B	1		1
			RES08-8A	1		1
			RES08-8B	1		1
			RES08-1B RES08-2B	<u> </u>	1	1
			RES08-3B	1	1	1
Arsenic	0.005	0.005	RES08-5B	1	1	1
Alsenic	0.005	0.005	RES08-6A	1	1	1
			RES08-6B RES08-8A	<u> </u>	1	1
			RES08-8B	1	1	1
Beryllium	0.0053		RES08-8A	1	1	
			RES08-2B	1	1	1
			RES08-3A RES08-3B	<u> </u>	1	1
			RES08-3B RES08-4B	<u> </u>	1	1
Cadmium	10 ^{(0.86*(log(Hardness))-3.2)} /1000 ⁽⁴⁾	10 ^{(0.86*(log(Hardness))-3.2)} /1000 ⁽⁴⁾	RES08-5A	1	1	1
Cadimum	10 71000		RES08-5B	1	1	1
			RES08-6A RES08-6B	<u> </u>	1	1
			RES08-8A	1	1	1
			RES08-8B	1	1	1
Cobalt	0.11		RES08-6B	1	1	
			RES08-1A	1		1
			RES08-1B RES08-2A	<u> </u>	1	1
			RES08-2B	1	1	1
			RES08-3A	1		1
			RES08-3B	1	1	1
Copper	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁴⁾	0.002 to 0.004 ⁽⁴⁾	RES08-4A	1		1
			RES08-4B RES08-5B	1	1	1
			RES08-5B RES08-6A	1	1	1
			RES08-6B	1	1	1
			RES08-8A	1	1	1
			RES08-8B	1	1	1
			RES08-1B	1	1	1
			RES08-2A	1	1	1
			RES08-2B	1	1	1
			RES08-3A	1		1
			RES08-3B	1	1	1
Iron	1	0.3	RES08-4A	1		1
			RES08-4B	1		1
			RES08-5B	1	1	1
			RES08-6A	1	1	1
			RES08-6B RES08-8A	1	1	1
			RES08-8A RES08-8B	1	1	1
			RES08-8B RES08-1B	1		1
			RES08-2A	1		1
			RES08-2B	1		1
Lood	0.003 to $e^{(1.273*In[[Hardness (Dissolved)]]-1.460)}/1000^{(4)}$	0.001 to 0.007 ⁽⁴⁾	RES08-3B	1		1
Lead			RES08-5B RES08-6A	<u> </u>		1
			RES08-6B	1		1
			RES08-8A	1	1	1
			RES08-8B	1		1
Manganese	(0.01102*[Hardness(Dissolved)])+2)/1000 (4)		RES08-5B RES08-6B	<u> </u>	1	
			RES08-1B	1		1
Mercury	0.0001	0.000026	RES08-5B	1		1
moroury	0.0001	0.000020	RES08-6A	1		1
			RES08-8A RES08-1A	<u>1</u> 1		1
			RES08-1A RES08-1B	1		1
			RES08-2A	1		1
Malubdanum	2	0.070	RES08-4A	1		1
Molybdenum	2	0.073	RES08-5B	1		1
			RES08-6A	1		1
			RES08-8A	1		1
			RES08-8B	1		1

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER QUALITY **GUIDELINE EXCEEDANCES**

Parameter	BCWQG ⁽²⁾ Limits	CCME ⁽³⁾ Limits	Site	Total Number of Samples	BCWQG Exceedances	Print Mar/23/10 10:05: CCME Exceedances
		Ennito	RES08-2B	1	1	1
	(4)		RES08-5B	1	1	1
Nickel	0.025 to 0.150 ⁽⁴⁾	0.025 to 0.15 ⁽⁴⁾	RES08-6A	1	1	1
			RES08-6B	1	1	1
			RES08-1B	1	1	1
			RES08-2A	1	1	1
			RES08-2B	1	•	1
	0.002		RES08-4A	1		1
Selenium		0.001	RES08-4B	1		1
Gelenium	0.002	0.001	RES08-5B	1	1	1
			RES08-6B	1	1	1
						1
			RES08-8A	1	1	-
			RES08-8B	1		1
			RES08-1A	1		1
		0.0001	RES08-1B	1		1
			RES08-2A	1	4	1
			RES08-2B RES08-3A	1	1	1
			RES08-3A RES08-3B	<u> </u>	1	1
Silver	0.0001 to 0.003 ⁽⁴⁾		RES08-4A	1	1	1
Oliver	0.0001 10 0.005		RES08-4A RES08-4B	1		1
			RES08-5B	1	1	1
			RES08-6A	1	1	1
			RES08-6B	1	1	1
			RES08-8A	1	1	1
			RES08-8B	1	1	1
Thallium	0.0003	0.0008	RES08-6B	1	1	1
manian			RES08-1B	1	1	1
			RES08-2A	1	1	
			RES08-2B	1	1	
			RES08-3B	1	1	
			RES08-4B	1	1	
Vanadium	0.006		RES08-5B	1	1	
			RES08-6A	1	1	
			RES08-6B	1	1	
			RES08-8A	1	1	
			RES08-8B	1	1	
			RES08-1B	1		1
			RES08-2A	1		1
			RES08-2B	1	1	1
						-
Zinc	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁴⁾	0.03	RES08-3B	1	1	1
LIIL	(33+0.75 ([maiuliess (Dissolved)]-90))/1000 to 0.033	0.03	RES08-5B	1	1	1
			RES08-6A	1	1	1
			RES08-6B	1	1	1
			RES08-8A	1	1	1
			RES08-8B	1	1	1

NOTES:

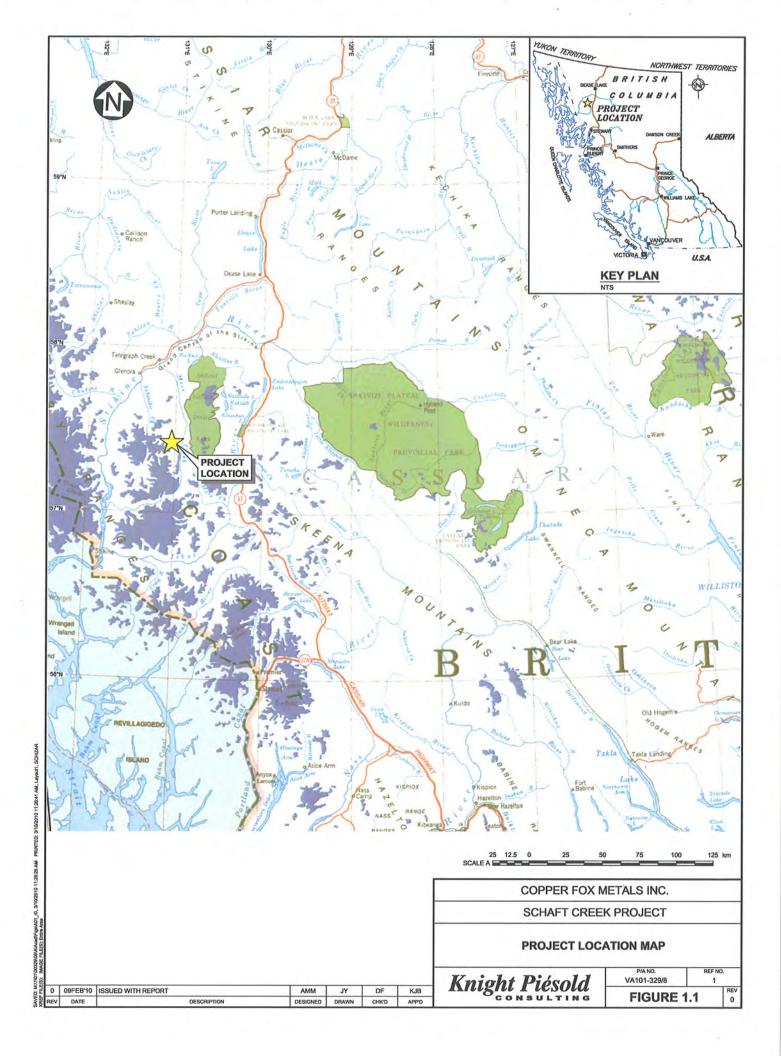
1. UNITS ARE mg/L, UNLESS OTHERWISE STATED.

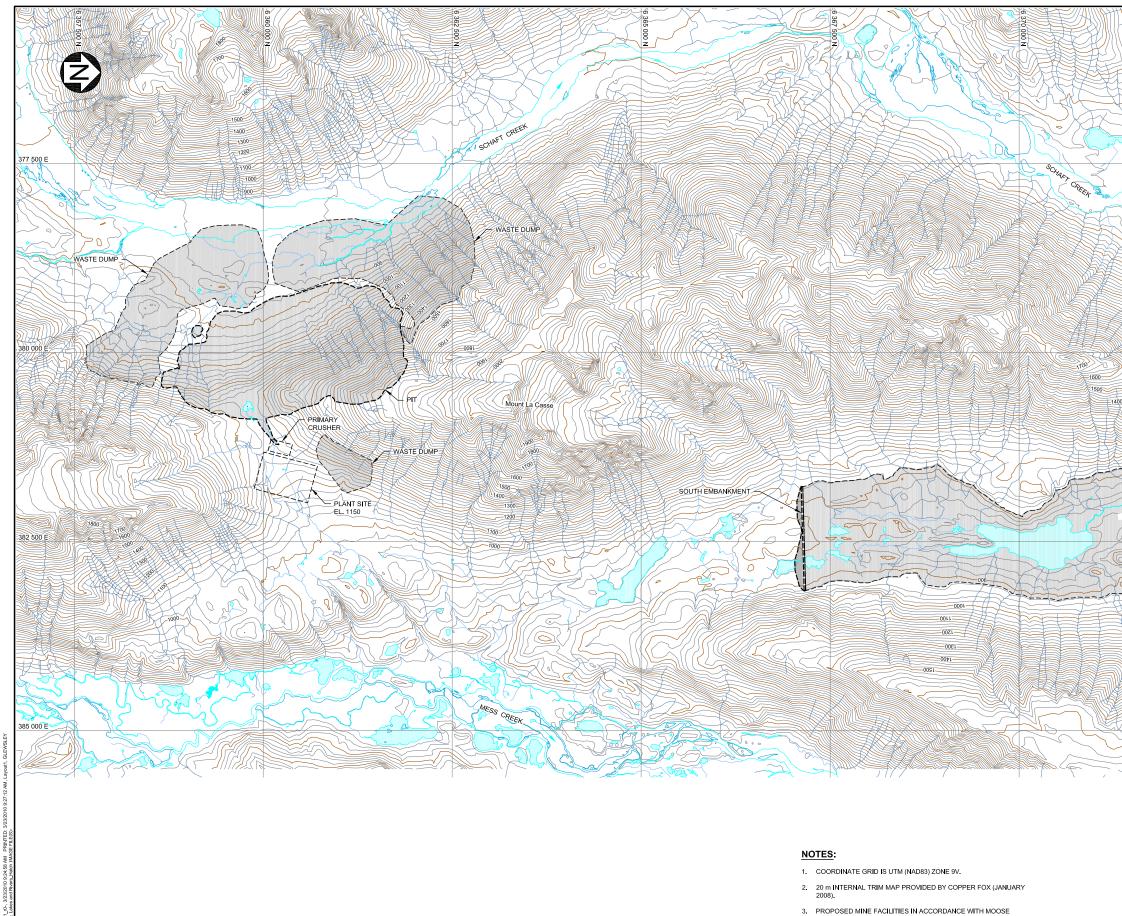
2. BCWQG - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006).

3. CCME - CANADAIN COUNCIL OF MINISTERS OF THE ENVIRONMENT, CANADIAN ENVIRONMENTAL QUALITY GUIDELINES - FRESHWATER GUIDELINES FOR THE PROTECTION OF AQUATIC LIFE, UPDATED DECEMBER 2006.

4. HARDNESS (CaCO3) DEPENDENT.

5. pH (IN SITU) DEPENDENT.

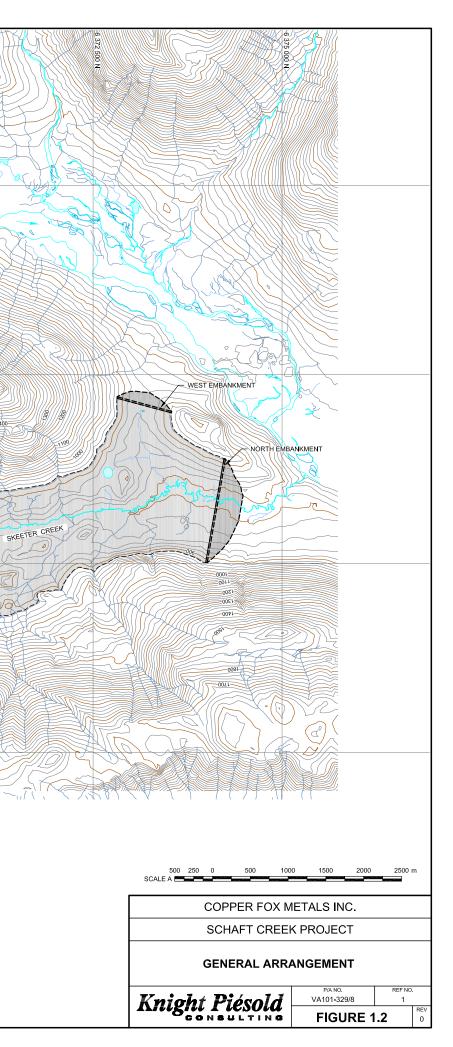

6. TEMPERATURE (IN SITU) DEPENDENT.

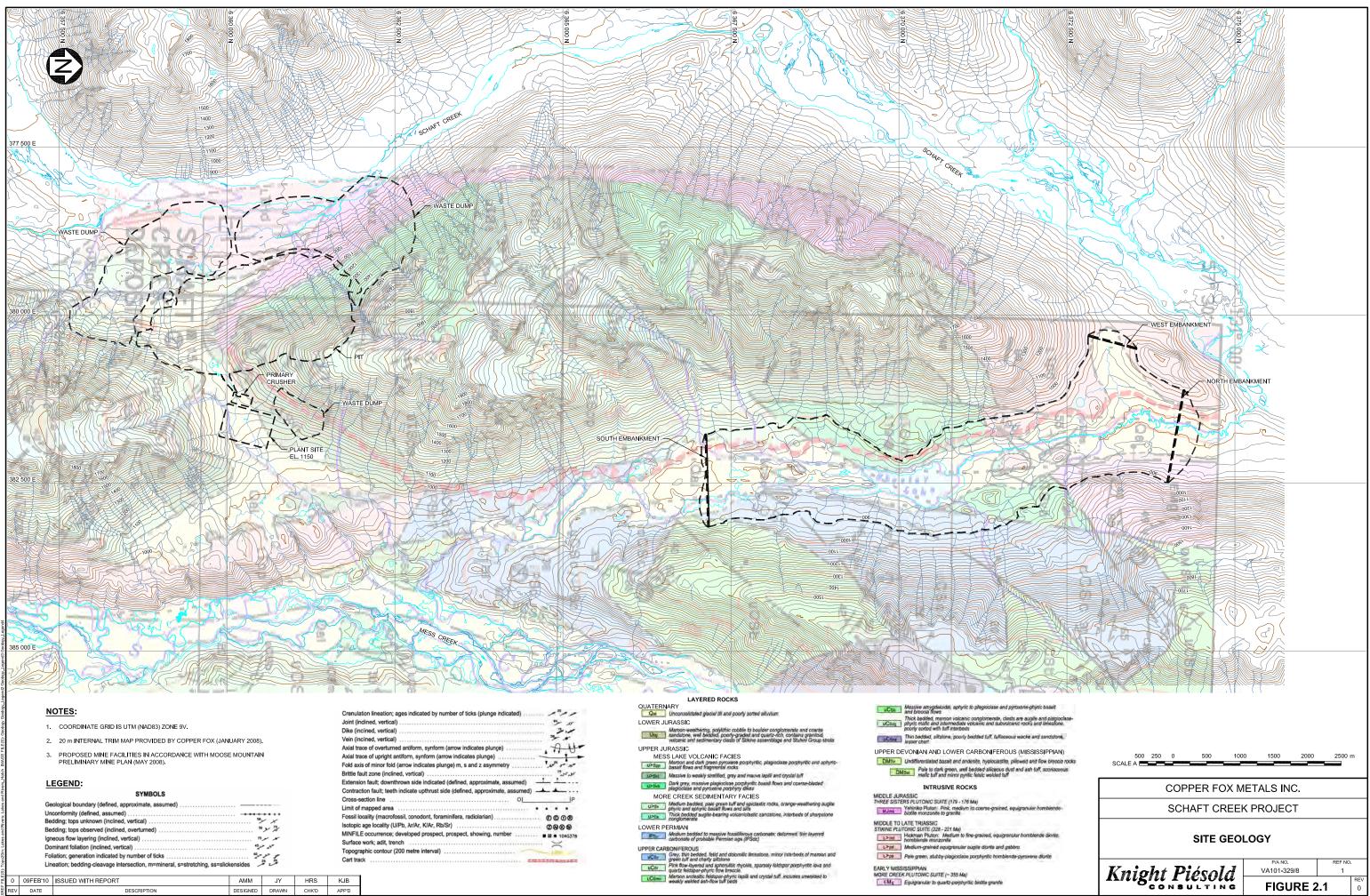

7. CHLORIDE (DISSOLVED) DEPENDENT.

8. pH DEPENDENT.

 0
 21 DEC' 09
 ISSUED WITH REPORT VA101-329/8-1
 AL
 HRS
 KJB

 REV
 DATE
 DESCRIPTION
 PREP'D
 CHK'D
 APP'D

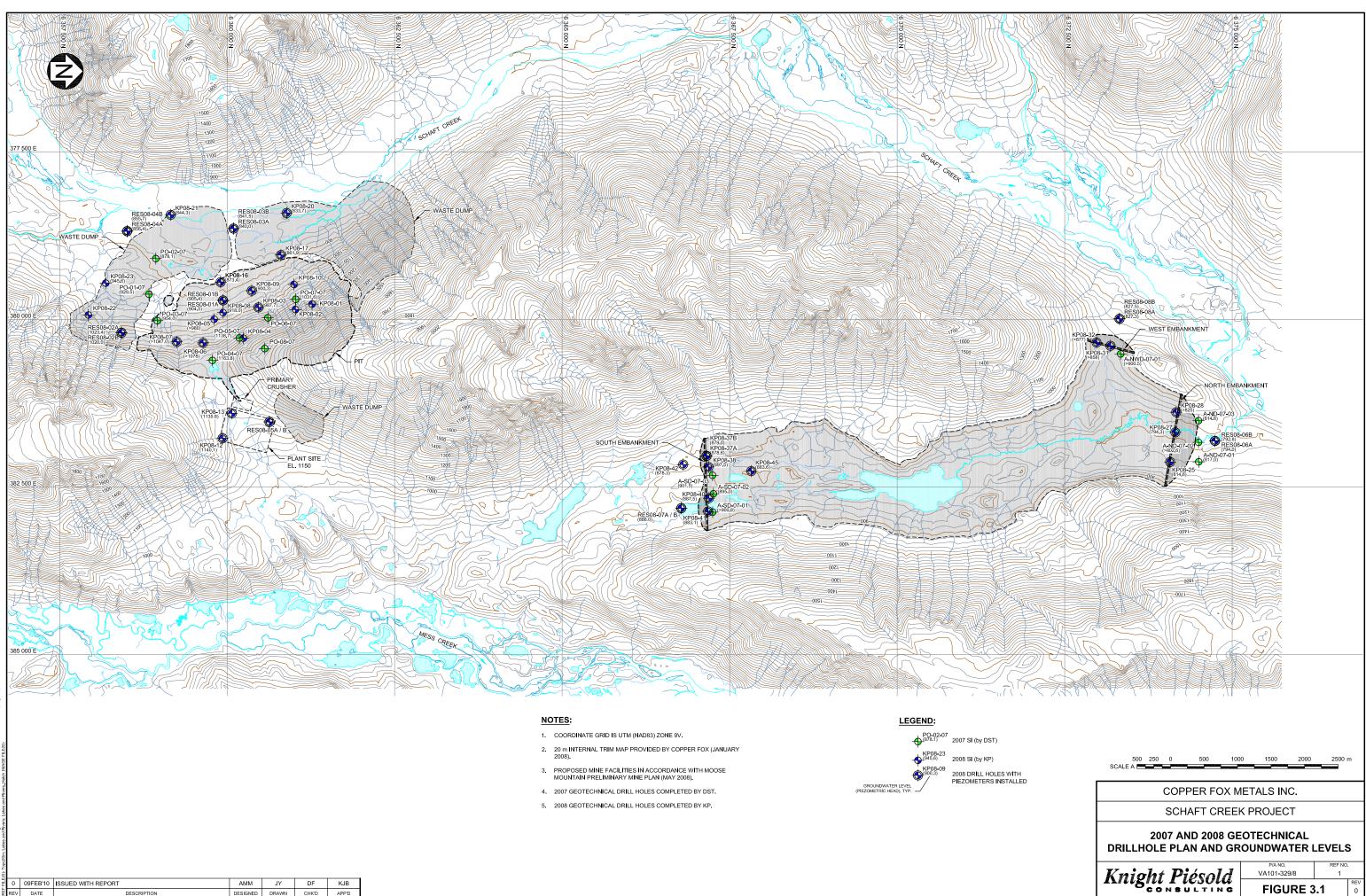



3.	PROPOSED MINE FACILITIES IN ACCORDANCE WITH MOOS
	MOUNTAIN PRELIMINARY MINE PLAN (MAY 2008).

0 09FEB'10 ISSUED WITH REPORT AMM JY DF KJB REV DATE DESIGNED DRAWN CHK'D APP'D DESCRIPTION

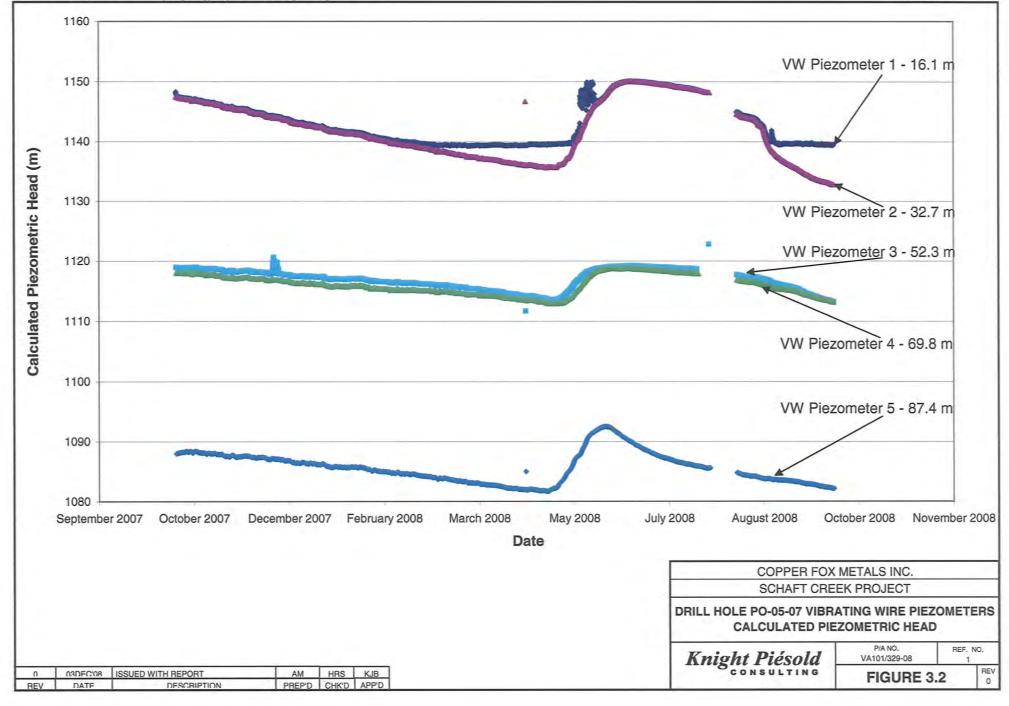
A

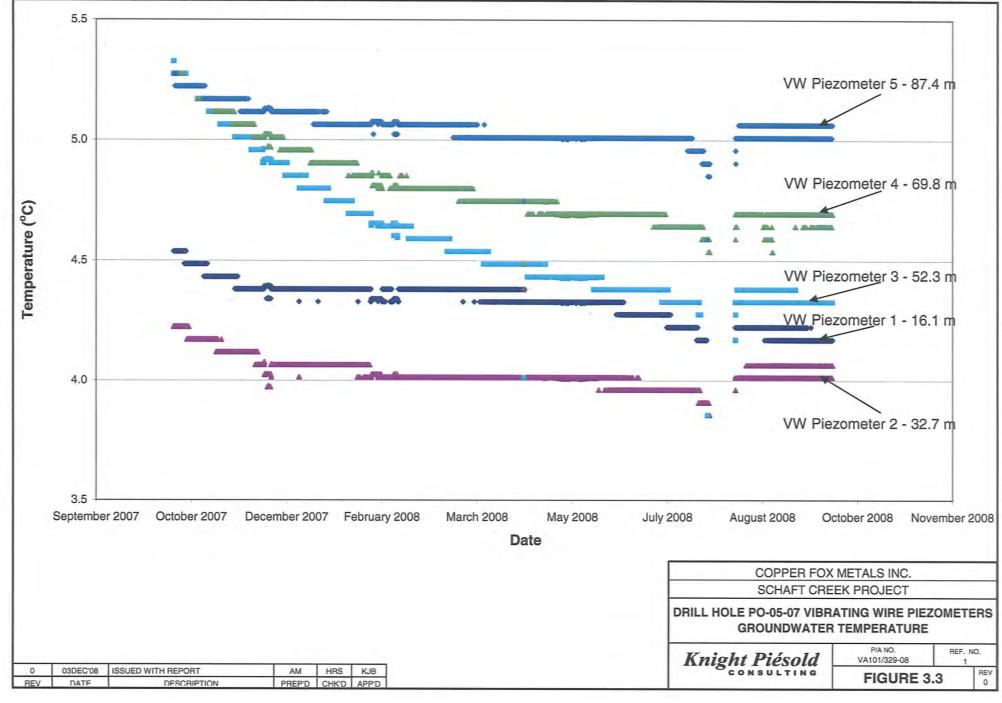
PDF

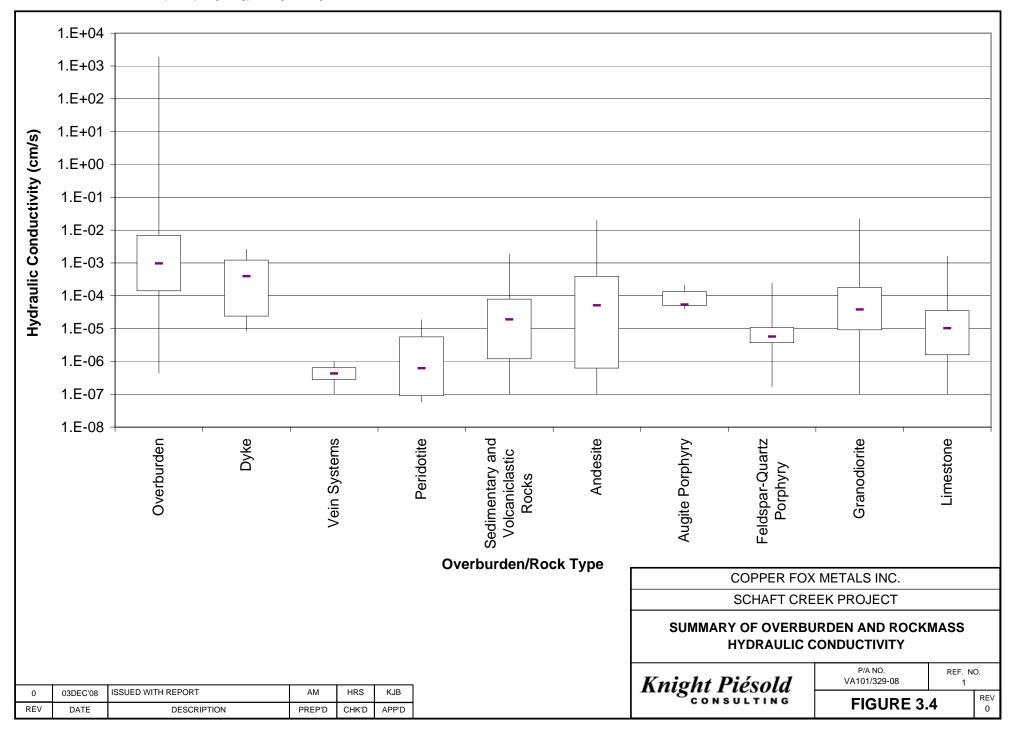


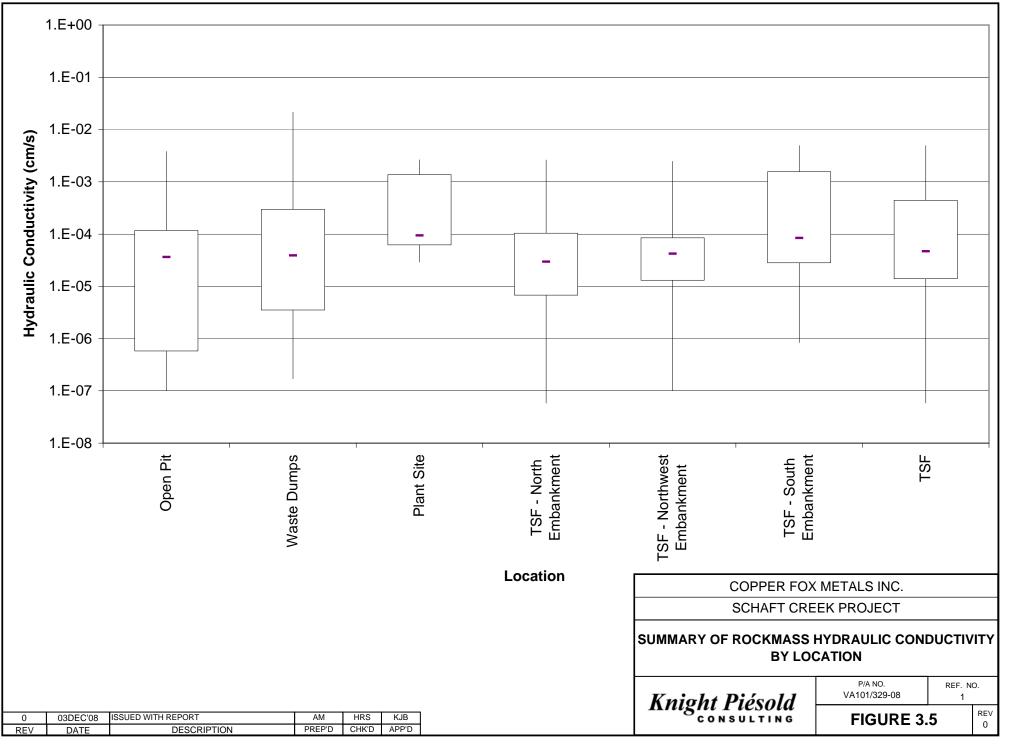
Ge	eological boundary (defined, approximate, assumed)	
Un	conformity (defined, assumed)	
Be	dding; tops unknown (inclined, vertical)	** ×
Be	dding; tops observed (inclined, overturned)	. °×3
	neous flow layering (inclined, vertical)	
Do	minant foliation (inclined, vertical)	45 - JA
Fo	liation; generation indicated by number of ticks neation; bedding-cleavage intersection, m=mineral, s=stretching, ss=slickensides	60 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
Lir	eation; bedding-cleavage intersection, m=mineral, s=stretching, ss=slickensides	2 2

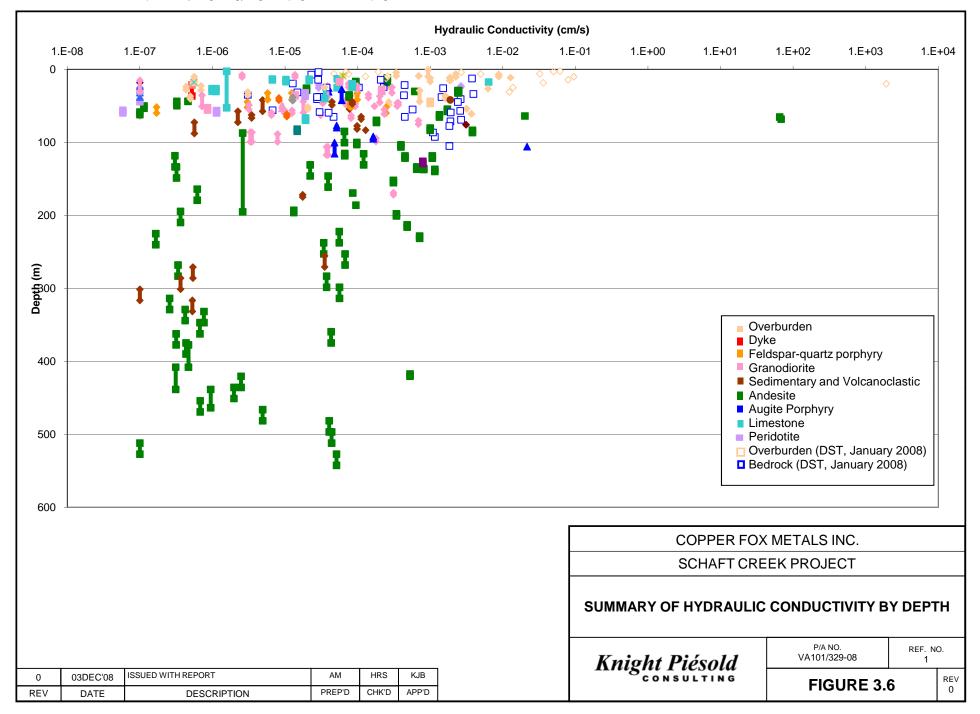
Crenulation lineation; ages indicated by number of ticks (plunge indicated)	1000
Joint (inclined, vertical)	30
Dike (inclined, vertical)	2.1
Vein (inclined, vertical)	34 1
Axial trace of overturned antiform, synform (arrow indicates plunge)	All
Axial trace of upright antiform, synform (arrow indicates plunge)	
Fold axis of minor fold (arrow indicates plunge) m, s and z asymmetry	Frist
Brittle fault zone (inclined, vertical)	75 5.15
Extension fault; downthrown side indicated (defined, approximate, assumed)	- <u>1</u>
Contraction fault; teeth indicate upthrust side (defined, approximate, assumed)	. A
Cross-section line	JP.
Limit of mapped area	
Fossil locality (macrofossil, conodont, foraminifera, radiolarian)	DOOR
	2888
MINFILE occurrence; developed prospect, prospect, showing, number	
Surface work; adit, trench	~
Topographic contour (200 metre interval)	2
Cart track	

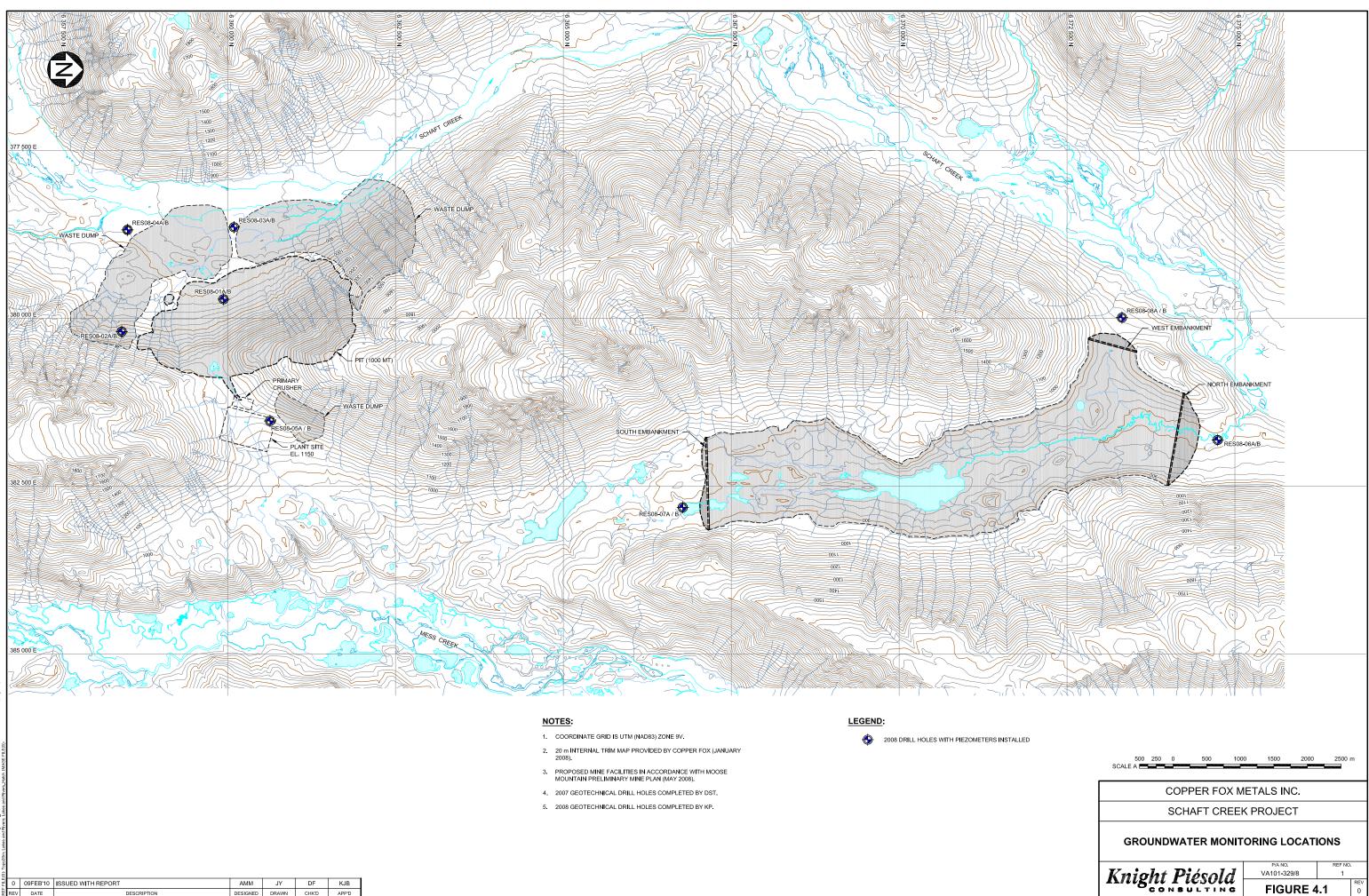

LAYERED ROCKS	
RNARY Unconsolidated glacial till and poorly sorted allivitum	UCSa Ma
R JURASSIC Marcon-weathening, polylithic cobble to boulder conglomerate and coarde candation, well behalad, ponty-graded and quarts-rich, contains granitoid, violance and sedimentary class of Solkere assemblage and Stuhiel Group strate UIRASSIC.	UCSog phy poc
ISURASSIC IESS LAKE VOLCANIC FACIES Marpon and dark green pyroxiene porphyttlic, plaglociaze porphyttlic and aphytic- basait flows and fragmental rocks	UPPER DEVC
Massive to weakly stratified, gray and mauve labell and crystal luff Dark gray, massive plaglociase porphyritic basell flows and coarse-bladed plaglociase and proxemp orphyry dikes	
IORE CREEK SEDIMENTARY FACIES Medium backed, paie green tuff and epictastic rocks, orange-weethering augite phylics and aphylic basal flows and alls Thick backed augite-bearing volcaniclestic sanutsione, interbeds of strarysione congiomerse	MIDDLE JURASS THREE SISTERS I MJmz biol
R PERMIAN Medium bedded to massive fosstillerous carbonate; deformed, thin leyered carbonate of probable Permian age (IPSdc)	STIKINE PLUTON
CARBONIFEROUS Gray, thin bedded, feld and dolomilic limestone, minor interbeds of maroan and grain full and charty sittatone Pirk flow-layered and spherulate rhyolke, sparsely feldspar porphyntic lava and quarts feldspar-shript clow benecia.	EARLY MISSISSI


0	09FEB'10	ISSUED WITH REPORT	AMM	JY	DF	KJB
REV	DATE	DESCRIPTION	DESIGNED	DRAWN	CHK'D	APP'D

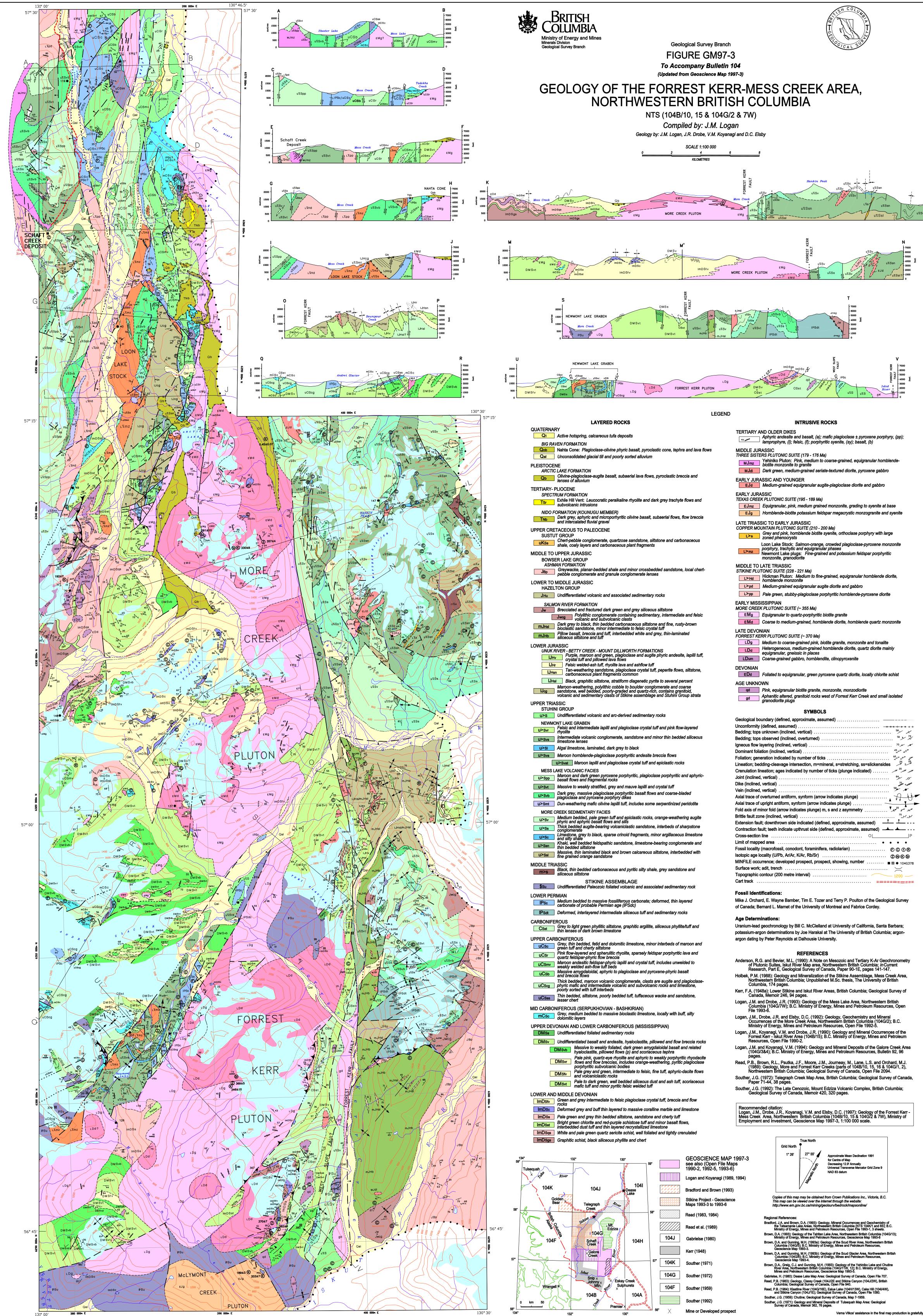





M:\1\01\00329\08\A\Data\Hydrogeology Report\DST VW\Fig. 3.3 Figure 3.3



M:\1\01\00329\08\A\Report\Hydrogeology - 1\Figures\Figure 3.5.xls


0	09FEB'10	ISSUED WITH REPORT	AMM	JY	DF	KJB
REV	DATE	DESCRIPTION	DESIGNED	DRAWN	CHK'D	APP'D

APPENDIX A

GEOLOGY OF THE FORREST KERR-MESS CREEK AREA, NORTHWESTERN BRITISH COLUMBIA

VA101-329/8-1 Rev 0 April 1, 2010

131° 00′

	EJd
CENE FORMATION le Hill Vent: Leucocratic peralkaline rhyolite and dark grey trachyte flows and volcanic intrusions	EARLY JUR TEXAS CREE
ATION (KOUNUGU MEMBER) k grey, aphyric and microporhyritic olivine basalt, subaerial flows, flow breccia intercalated fluvial gravel	EJg LATE TRIAS
EOUS TO PALEOCENE COUP	COPPER MC
rt-pebble conglomerate, quartzose sandstone, siltstone and carbonaceous le, coaly layers and carbonaceous plant fragments	
ER JURASSIC AKE GROUP <i>ORMATION</i>	L>mz
ywacke, planar-bedded shale and minor crossbedded sandstone, local chert- ble conglomerate and granule conglomerate lenses	STIKINE PLU
DLE JURASSIC GROUP	L>pd
ifferentiated volcanic and associated sedimentary rocks	L>pp
IVER FORMATION	EARLY MISS
cciated and fractured dark green and grey siliceous siltstone	MORE CREE EMg
Polylithic conglomerate containing sedimentary, intermediate and felsic volcanic and subvolcanic clasts k grey to black, thin bedded carbonaceous siltstone and fine, rusty-brown	EMg
lastic sandstone, minor intermediate to felsic crystal tuff w basalt, breccia and tuff, interbedded white and grey, thin-laminated eous siltstone and tuff	LATE DEVO FORREST KE
	LDg
- BETTY CREEK - MOUNT DILLWORTH FORMATIONS Purple, maroon and green, plagioclase and augite phyric andesite, lapilli tuff, crystal tuff and pillowed lava flows	LDd LDum
Felsic welded-ash tuff, rhyolite lava and ashflow tuff Tan-weathering sandstone, plagioclase crystal tuff, peperite flows, siltstone, carbonaceous plant fragments common	DEVONIAN EDd
Black, graphitic siltstone, stratiform diagenetic pyrite to several percent	
oon-weathering, polylithic cobble to boulder conglomerate and coarse dstone, well bedded, poorly-graded and quartz-rich, contains granitoid, anic and sedimentary clasts of Stikine assemblage and Stuhini Group strata	
	gd
, IOUP	
ifferentiated volcanic and arc-derived sedimentary rocks	
AKE GRABEN ic and intermediate lapilli and plagioclase crystal tuff and pink flow-layered lite	Geological bo Unconformity
rmediate volcanic conglomerate, sandstone and minor thin bedded siliceous stone lenses	Bedding; tops Bedding; tops
al limestone, laminated, dark grey to black	Igneous flow Dominant foli
oon hornblende-plagioclase porphyritic andesite breccia flows	Foliation; gen
rat Maroon lapilli and plagioclase crystal tuff and epiclastic rocks	Lineation; be
VOLCANIC FACIES oon and dark green pyroxene porphyritic, plagioclase porphyritic and aphyric-	Crenulation li Joint (inclined
alt flows and fragmental rocks	Dike (inclined
sive to weakly stratified, grey and mauve lapilli and crystal tuff k grey, massive plagioclase porphyritic basalt flows and coarse-bladed	Vein (inclined
ioclase and pyroxene porphyry dikes	Axial trace of
-weathering mafic olivine lapilli tuff, includes some serpentinized peridotite	Axial trace of
K SEDIMENTARY FACIES	Fold axis of n Brittle fault zo
lium bedded, pale green tuff and epiclastic rocks, orange-weathering augite ic and aphyric basalt flows and sills	Extension fau
k bedded augite-bearing volcaniclastic sandstone, interbeds of sharpstone glomerate	Contraction fa
estone, grey to black, sparse crinoid fragments, minor argillaceous limestone silty shale	Cross-section
ki, well bedded feldspathic sandstone, limestone-bearing conglomerate and bedded siltstone	Limit of mapp
sive. thin laminated black and brown calcareous siltstone. interbedded with	Fossil locality Isotopic age I
grained orange sandstone	MINFILE occ

APPENDIX B

SUMMARY OF GROUNDWATER QUALITY DATA

- Appendix B1 Summary of Groundwater Quality and Guideline Exceedances
- Appendix B2 Summary of Quality Assurance and Quality Control Data

VA101-329/8-1 Rev 0 April 1 2010

APPENDIX B1

SUMMARY OF GROUNDWATER QUALITY AND GUIDELINE EXCEEDANCES

(Pages B1-1 to B1-18)

VA101-329/8-1 Rev 0 April 1 2010

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-1A

		SAWIF	LE LOCATION RES08-1A	Print Mar/23/10 10:53:32
Date Sampled	30-Sep-08	4-Oct-09	BCWQG ⁽²⁾	CCME ⁽³⁾
Time Sampled In Situ Parameters		9:45 AM	Bongo	COME
Conductivity (uS/cm)	16600	10319		
Oxygen Dissolved Oxygen Dissolved %	62.7	4.88		
pH	13.3	13.5	6.5 to 9	6.5 to 9
Redox Potential (mV)	-107			
Specific Conductivity (uS/cm) Temperature (°C)	4.7	7.39		
Physical Tests				
Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3)	<1 <17	<1 <1		
Carbonate Alkalinity (as CaCO3)	106	25.9		
Hydroxide Alkalinity (as CaCO3)	3380	679		
Total Alkalinity (as CaCO3) Conductivity (uS/cm)	3480 14500	705 15700		
Hardness (as CaCO3)	1680	1460		
pH Total Dissolved Solida	12.5 3960	12.5 3700	6.5 to 9	6.5 to 9
Total Dissolved Solids Total Suspended Solids	25.5	75.8		
Turbidity (NTU)	17.2	73.7		
Dissolved Anions Bromide	<0.5	<2.5		
Chloride	<5	<25	600	
Fluoride	<0.2	0.116	0.2 to 0.3 ⁽⁷⁾	
Sulphate Nutrients	217	162	100	
Ammonia (as N)	0.0962	0.0884	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	<0.05	<0.25	200	13
Nitrite (as N) Nitrogen (Total)	<0.01 <5	<0.05 2.32	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total Kjeldahl)	0.726	1.08		
Phosphate (Total; as P)	0.0128	0.062		
Phosphorus (Dissolved) Phosphorus (Total)	<0.3 <0.3	<0.3		
Dissolved Metals				
Aluminum	0.023	0.013 <0.001	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	<0.001 <0.001	<0.001	0.005	0.005
Barium	QA/QC	0.652	5	
Beryllium Bismuth	<0.005 <0.005	<0.005 <0.005	0.0053	
Boron	<0.1	<0.1	1.2	
Cadmium	0.00025	<0.0001	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾
Calcium Chromium	675 0.164	586 0.14		
Cobalt	<0.001	<0.001	0.11	
Copper	0.007	0.0179	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron Lead	<0.03 0.0042	<0.03 0.00338	0.35 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460})1000 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾
Lithium	0.51	0.475	0.003 to e	0.001 18 0.007
Magnesium	<0.05	<0.05		
Manganese Mercury	<0.0005 <0.00001	0.00344	(0.01102*[Hardness (Dissolved)])+0.54 (7) 0.0001	0.000026
Molybdenum	QA/QC (0.126)	0.106	2	0.073
Nickel	<0.005	<0.005	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium Selenium	203 <0.001	191 <0.001	0.002	0.001
Silicon	0.283	0.34	0.002	0.001
Silver	<0.0001	<0.0001	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium Strontium	915 33.4	992 37.1		
Thallium	<0.001	<0.001	0.0003	0.0008
Tin	<0.001 <0.01	<0.001 <0.01		
Titanium Uranium	<0.001	<0.0001		
Vanadium	<0.01	<0.01	0.006	
Zinc Total Metals	0.014	<0.01	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Total Metals Aluminum	0.184			0.005 to 0.1 ⁽¹¹⁾
Antimony	<0.001			
Arsenic Barium	<0.001 1.56		0.005 5	0.005
Beryllium	<0.005		0.0053	
Bismuth	<0.005			
Boron Cadmium	<0.1 <0.00017		1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾
Calcium	685			
Chromium Cobalt	0.17		0.44	
Cobalt Copper	<0.001 0.0128		0.11 (0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron	0.17		1	0.002 10 0.004
Lead	0.00506		0.003 to e ^{(1.273*In[[Hardness (Dissolved)]]-1.460})1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium Magnesium	0.536 0.238		<u> </u>	
Manganese	0.00973		(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	<0.00001		0.0001	0.000026
Molybdenum Nickel	0.125 <0.005		2 0.025 to 0.150 ⁽⁷⁾	0.073 0.025 to 0.15 ⁽⁷⁾
Potassium	215			
Selenium Silicon	<0.001 0.55		0.002	0.001
Silicon Silver	0.55		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	945			
Strontium	34.4			
Thallium Tin	<0.001 <0.001		0.0003	0.0008
Titanium	0.018			
Uranium	<0.0001		0.000	
Vanadium Zinc	<0.01 0.016		0.006 (33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Organics				
Carbon Organic (Total) M:11\01\00329\08\A\Report\1- Hydrogeology\Appendices\Appendix B\B1\[21.9	30		
	1 2010 DI. 1 10 DI. 10.XISIKESU8-1/			

NOTES:

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD NDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD NDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH LIMITS. 6. BOLD NDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. HARDNESS (as CaCO3) DEPENDENT 8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT

10. CHLORIDE (DISSOLVED) DEPENDENT 11. pH DEPENDENT

1	0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
1	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-1B

Date Sampled Fime Sampled n Situ Parameters Conductivity (uS/cm) Oxygen Dissolved Oxygen Dissolved % pH Redox Potential (mV) Specific Conductivity (uS/cm) Temperature (°C)	30-Sep-08			Print Mar/23/10 10:53:
n Situ Parameters Conductivity (uS/cm) Oxygen Dissolved Oxygen Dissolved % pH Redox Potential (mV) Specific Conductivity (uS/cm)		4-Oct-09	BCWQG ⁽²⁾	CCME ⁽³⁾
Oxygen Dissolved Oxygen Dissolved % pH Redox Potential (mV) Specific Conductivity (uS/cm)		10:10 AM		
Oxygen Dissolved % pH Redox Potential (mV) Specific Conductivity (uS/cm)	4034	10104 4.64		
Redox Potential (mV) Specific Conductivity (uS/cm)		38.1		
Specific Conductivity (uS/cm)	12.7	13.5	6.5 to 9	6.5 to 9
	-73.3	16674		
	5.64	4.37		
Physical Tests Acidity to pH 8.3 (as CaCO3)	<1	<1		
Bicarbonate Alkalinity (as CaCO3)	<1	<1		
Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3)	73.9 247	64.1 670		
Total Alkalinity (as CaCO3)	321	734		
Color (TCU)	13.7	<5		
Conductivity (uS/cm) Hardness (as CaCO3)	3550 960	4570 688		
pH	11.7	12	6.5 to 9	6.5 to 9
Total Dissolved Solids	2210 384	1840 1050		
Total Suspended Solids Turbidity (NTU)	218	585		
Dissolved Anions				
Bromide Chloride	<0.5 9.5	<2.5 <25	600	
Fluoride	<0.2	0.184	0.2 to 0.3 ⁽⁷⁾	
Sulphate	1160	566	100	
Autrients Ammonia (as N)	0.0832	0.0977	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	<0.05	<0.25	200	13
Nitrite (as N)	<0.01	< 0.05	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total) Nitrogen (Total Kjeldahl)	<5 0.416	1.03 0.734	<u> </u>	
Phosphate (Total; as P)	0.233	0.395		
Phosphorus (Dissolved) Phosphorus (Total)	<0.3 0.86	<0.3		
Dissolved Metals	0.00			
Aluminum	0.0649	0.0145	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	0.00059 0.00055	<0.0005 <0.0005	0.005	0.005
Barium	QA/QC	0.133	5	0.000
Beryllium Bismuth	<0.0025 <0.0025	<0.0025 <0.0025	0.0053	
Boron	0.055	<0.0025	1.2	
Cadmium	<0.001	<0.0011	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Calcium Chromium	384 0.0533	275 0.042		
Cobalt	<0.0005	<0.0005	0.11	
Copper	0.260	0.0161	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron Lead	0.042 <0.00025	<0.03 <0.00025	0.35 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾
Lithium	0.051	<0.025	0.003 to et al. 71000 (1	0.001 18 0.007
Magnesium	0.157	0.045		
Manganese Mercury	0.00079 <0.00001	<0.00025 <0.00001	(0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001	0.000026
Molybdenum	QA/QC (0.00311)	0.489	2	0.073
Nickel	<0.0025	0.0025	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium Selenium	31.1 0.00275	22.9 0.00141	0.002	0.001
Silicon	1.35	0.843	0.002	0.001
Silver	<0.00005	<0.00005	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium Strontium	351 11.2	346 10.3		
Thallium	<0.0005	<0.0005	0.0003	0.0008
Tin	< 0.0005	<0.0005		
Titanium Uranium	0.012 <0.00005	<0.01 <0.00005		
Vanadium	<0.005	<0.005	0.006	
Zinc Lotal Motals	<0.005	<0.005	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Fotal Metals Aluminum	24.9			0.005 to 0.1 ⁽¹¹⁾
Antimony	0.0132			
Arsenic Barium	0.0247 0.589		0.005	0.005
Beryllium	<0.0025		0.0053	
Bismuth	<0.0025 0.149			
	0.149 <0.0015		1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Bismuth Boron Cadmium	507			
Boron Cadmium Calcium				
Boron Cadmium Calcium Chromium	0.0918		0.11	
Boron Cadmium Calcium	0.0918 0.0174 0.28		0.11 (0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Boron Cadmium Calcium Chromium Cobalt Copper Iron	0.0174 0.28 24.4		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1	0.002 to 0.004 ⁽⁷⁾ 0.3
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead	0.0174 0.28 24.4 0.0233			
Boron Cadmium Calcium Chromium Cobalt Copper Iron	0.0174 0.28 24.4		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1	0.3
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Maganese	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In[[Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Maganese Mercury	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In[[Hardness (Dissolved)])+1.460} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Maganese	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2	0.3 0.001 to 0.007 ⁽⁷⁾
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003 0.346 0.031 33.1		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*in[[Hardness (Dissolved)])-1.460} //1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.025 to 0.150 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Maganese Mercury Molybdenum Nickel Potassium Selenium	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003 0.346 0.031 33.1 0.00629		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003 0.346 0.031 33.1		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*in[[Hardness (Dissolved)])-1.460} //1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.025 to 0.150 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.0003 0.346 0.031 3.3.1 0.00629 48.9 0.00165 330		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In[[Hardness (Dissolved)]]-1.460]} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.025 to 0.150 ⁽⁷⁾ 0.002	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Silver Sodium	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003 0.346 0.031 33.1 0.00629 48.9 0.00165 330 11.4		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.0025 to 0.150 ⁽⁷⁾ 0.002 0.0001 to 0.003 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Magnesium Maganese Mercury Molybdenum Nickel Potassium Selenium Selenium Silicon Silver Sodium Strontium Thallium	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003 0.346 0.031 33.1 0.00629 48.9 0.00165 330 11.4 <0.0005 0.00833		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In[[Hardness (Dissolved)]]-1.460]} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.025 to 0.150 ⁽⁷⁾ 0.002	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Magnesium Manganese Mercury Molybdenum Molybdenum Nickel Potassium Selenium Silicon Siliver Sodium Silicon Siliver Sodium Tin Tin	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003 0.346 0.031 33.1 0.00629 48.9 0.00165 330 11.4 <0.0005 0.00833 0.519		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.0025 to 0.150 ⁽⁷⁾ 0.002 0.0001 to 0.003 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Magnesium Maganese Mercury Molybdenum Nickel Potassium Selenium Selenium Silicon Silver Sodium Strontium Thallium	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003 0.346 0.031 33.1 0.00629 48.9 0.00165 330 11.4 <0.0005 0.00833		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.0025 to 0.150 ⁽⁷⁾ 0.002 0.0001 to 0.003 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001
Boron Cadmium Calcium Chromium Cobalt Copper Iron Lead Lithium Magnesium Maganese Mercury Molybdenum Mickel Potassium Selenium Silicon Silver Sodium Strontium Thallium Tin Titanium Uranium	0.0174 0.28 24.4 0.0233 0.065 51.2 0.761 0.00003 0.346 0.031 3.3.1 0.00629 48.9 0.00165 330 11.4 <0.0005 0.00833 0.519 0.00298		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1 0.003 to e ^{(1.273*In[[Hardness (Dissolved)])-1.460]} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.0025 to 0.150 ⁽⁷⁾ 0.002 0.0001 to 0.003 ⁽⁷⁾ 0.0003	0.3 0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED.

1. OWIS ARE HIGH, UNLESS OTHERWISE STATED.
2. BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006).
3. CCME - AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006).
4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS.
5. BOLD INDICATES THE VALUE EXCEEDS THE COME: AQUATIC LIFE: FRESH LIMITS.
6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS.
7. HARDNESS (as CaCO3) DEPENDENT
7. HARDNESS (AS CACO3) D

8. pH (IN SITU) DEPENDENT

9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT

11. pH DEPENDENT

0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-2A

Date Sampled Filme Sampled Ins Situ Parameters Conductivity (uS/cm) Oxygen Dissolved Oxygen Dissolved % pH Redox Potential (mV) Specific Conductivity (uS/cm) Temperature (°C) Physical Tests Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Total Alkalinity (as CaCO3) Conductivity (uS/cm) Hardness (as CaCO3) pH Total Dissolved Solids	29-Sep-08 55 13.3 -82.9 - 5.46	4-Oct-09 9:12 AM 4500 8.39 64 12.7 8198 3.42 <1 <1 <1 68 361 529	BCWQG ⁽²⁾	CCME ⁽³⁾
Conductivity (uS/cm) Oxygen Dissolved Oxygen Dissolved % pH Redox Potential (mV) Specific Conductivity (uS/cm) Temperature (°C) Physical Tests Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Total Alkalinity (as CaCO3) Color (TCU) Conductivity (uS/cm) Hardness (as CaCO3) pH Total Dissolved Solids Total Suspended S	13.3 -82.9 5.46 <1 <13 132 3310 3440 36.2 13200 1900	8.39 64 12.7 8198 3.42 <1 <1 168 361	6.5 to 9	6.5 to 9
Oxygen Dissolved Oxygen Dissolved % pH Redox Potential (mV) Specific Conductivity (uS/cm) Temperature (°C) Physical Tests Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Total Alkalinity (uS/cm) Hardness (as CaCO3) PH Total Dissolved Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions	13.3 -82.9 5.46 <1	8.39 64 12.7 8198 3.42 <1 <1 168 361	6.5 to 9	6.5 to 9
pH Redox Potential (mV) Specific Conductivity (uS/cm) Temperature (°C) Physical Tests Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3) Color (TCU) Conductivity (uS/cm) Hardness (as CaCO3) pH Total Dissolved Solids Total Suspended Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions	13.3 -82.9 5.46 <1	12.7 8198 3.42 <1 <1 168 361	6.5 to 9	6.5 to 9
Redox Potential (mV) Specific Conductivity (uS/cm) Temperature (°C) Physical Tests Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Total Alkalinity (as CaCO3) Conductivity (uS/cm) Hardness (as CaCO3) PH Total Dissolved Solids Total Suspended Solids Total Juspolved Solids Total Dissolved Solids Total Dissolved Solids	-82.9 5.46 <1 <13 132 3310 3440 36.2 13200 1900	8198 3.42 <1 <1 <1 68 361		
Temperature (°C) Physical Tests Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3) Total Alkalinity (as CaCO3) Color (TCU) Conductivity (uS/cm) Hardness (as CaCO3) PH Total Dissolved Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions	<1 <13 132 3310 3440 36.2 13200 1900	3.42 <1 <1 168 361		
Physical Tests Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3) Total Alkalinity (as CaCO3) Color (TCU) Conductivity (uS/cm) Hardness (as CaCO3) pH Total Dissolved Solids Turbidity (NTU) Dissolved Anions	<1 <13 132 3310 3440 36.2 13200 1900	<1 <1 168 361		
Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3) Pydroxide Alkalinity (as CaCO3) Total Alkalinity (as CaCO3) Color (TCU) Conductivity (uS/cm) Hardness (as CaCO3) pH Total Dissolved Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions	<13 132 3310 3440 36.2 13200 1900	<1 168 361		
Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3) Total Alkalinity (as CaCO3) Color (TCU) Conductivity (uS/cm) Hardness (as CaCO3) pH Total Suspended Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions	132 3310 3440 36.2 13200 1900	168 361		
Hydroxide Alkalinity (as CaCO3) Total Alkalinity (as CaCO3) Color (TCU) Conductivity (uS/cm) Hardness (as CaCO3) pH Total Dissolved Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions	3310 3440 36.2 13200 1900	361		
Color (TCU) Conductivity (uS/cm) Hardness (as CaCO3) pH Total Dissolved Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions	36.2 13200 1900	529		
Conductivity (uS/cm) Hardness (as CaCO3) pH Total Dissolved Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions	13200 1900	<5		
pH Total Dissolved Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions		2660		
Total Dissolved Solids Total Suspended Solids Turbidity (NTU) Dissolved Anions		379		
Total Suspended Solids Turbidity (NTU) Dissolved Anions	3990	11.9 708	6.5 to 9	6.5 to 9
Dissolved Anions	260	27.8		
	140	41.3		
Bromide	<0.5	<0.5		
Chloride	5.7	<5	600	
Fluoride Sulphate	0.24	<0.2 36.2	0.2 to 0.3 ⁽⁷⁾ 100	
Nutrients				
Ammonia (as N)	0.117	0.0911	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N) Nitrite (as N)	0.151 <0.01	<0.05 <0.01	200 0.06 to 0.6 ⁽¹⁰⁾	13 0.06
Nitrogen (Total)	<0.01	0.42		0.00
Nitrogen (Total Kjeldahl)	1.24	0.408		
Phosphate (Total; as P) Phosphorus (Dissolved)	0.169 <0.3	0.101 <0.3		
Phosphorus (Total)	<0.3		<u> </u>	
Dissolved Metals	0.494	0.174	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.4 (11)
Aluminum Antimony	<0.001	0.00127	U.I (0 e	0.005 to 0.1 ⁽¹¹⁾
Arsenic	<0.001	0.00047	0.005	0.005
Barium Beryllium	QA/QC <0.005	0.337 <0.001	5 0.0053	
Bismuth	<0.005	<0.001	0.0000	
Boron	<0.1	<0.02	1.2 (0.96*/log/[Hardness (Dissolved)])-2.2). (7)	(0.96*(log([Hardpace (Dissolved)]))-2.2). (7)
Cadmium Calcium	<0.001 761	<0.00025 152	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾
Chromium	0.701	0.0512		
Cobalt	<0.001 0.0042	< 0.0002	0.11	(7)
Copper Iron	<0.03	0.00632 <0.03	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 0.35	0.002 to 0.004 ⁽⁷⁾ 0.3
Lead	0.00367	0.00014	0.003 to e ^{(1.273*In[[Hardness (Dissolved)]]-1.460} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium	0.25 0.123	0.048		
Magnesium Manganese	0.00261	0.00015	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	<0.00001	<0.00001	0.0001	0.000026
Molybdenum	QA/QC	0.103 <0.001	2	0.073
Nickel Potassium	<0.005 302	48.7	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	0.0191	0.00144	0.002	0.001
Silicon Silver	0.48	1.23 <0.00002	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	728	123	0.0001 to 0.003	0.0001
Strontium	19.1	4.49	0.0000	0.0000
Thallium Tin	<0.001 0.001	<0.0002 0.00203	0.0003	0.0008
Titanium	0.01	<0.01		
Uranium Vanadium	0.00011 <0.01	<0.0002 <0.002	0.006	
Zinc	0.02	0.0175	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Fotal Metals				
Aluminum Antimony	2.93 0.0028			0.005 to 0.1 ⁽¹¹⁾
Arsenic	0.0028		0.005	0.005
Barium	1.7		5	
Beryllium Bismuth	<0.005 <0.005		0.0053	
Boron	<0.1		1.2	
Cadmium	<0.001		10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Calcium Chromium	815 0.738		l	
Cobalt	0.0025		0.11	
Copper	0.0367		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron Lead	3.18 0.00747		1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460})1000 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾
Lithium	0.26		0.003 to e	0.001 t0 0.007 * /
Magnesium	2.18			
Manganese Mercury	0.104 <0.00001		(0.01102*[Hardness (Dissolved)])+0.54 (7) 0.0001	0.000026
Molybdenum	0.319		2	0.00026
Nickel	0.0082		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium Selenium	308 0.0185	l	0.002	0.001
Silicon	7.68		0.002	
Silver	0.00054		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium Strontium	727 19.7		<u> </u>	
Thallium	<0.001		0.0003	0.0008
Tin	0.0041			
Titanium Uranium	0.186		<u> </u>	
Vanadium	0.011		0.006	
Zinc	0.082		(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Organics Carbon Organic (Total)	22.9	8.44		

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. HARDNESS (as CaCO3) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 11. pH DEPENDENT 14. DISSOLVED) DEPENDENT 15. CHLORIDE (DISSOLVED) DEPENDENT 16. CHLORIDE (DISSOLVED) MENDERDENT 17. HARDNESS (AGDISOLVED) DEPENDENT 18. CHLORIDE (DISSOLVED) DEPENDENT 19. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 11. pH DEPENDENT 12. CHLORIDE (DISSOLVED) DEPENDENT 13. CHLORIDE (DISSOLVED) DEPENDENT 14. DISSOLVED) DEPENDENT 15. CHLORIDE (DISSOLVED) DEPENDENT 16. CHLORIDE (DISSOLVED) DEPENDENT 17. CHLORIDE (DISSOLVED) DEPENDENT 17. CHLORIDE (DISSOLVED) DEPENDENT 18. CHLORIDE (DISSOLVED) DEPENDENT 19. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 11. pH DEPENDENT 12. CHLORIDE (DISSOLVED) DEPENDENT 13. CHLORIDE (DISSOLVED) DEPENDENT 14. DISSOLVED) DEPENDENT 15. CHLORIDE (DISSOLVED) DEPENDENT 16. CHLORIDE (DISSOLVED) DEPENDENT 17. CHLORIDE (DISSOLVED) DEPENDENT 18. CHLORIDE (DISSOLVED) DEPENDENT 19. CHLORIDE (DISSOLVED) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 11. CHLORIDE (DISSOLVED) DEPENDENT 12. CHLORIDE (DISSOLVED) DEPENDENT 13. CHLORIDE (DISSOLVED) DEPENDENT 14. CHLORIDE (DISSOLVED) DEPENDENT 15. CHLORIDE (DI

0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-2B

Date Sampled Fime Sampled	29-Sep-08	4-Oct-09 8:50 AM	BCWQG ⁽²⁾	Print Mar/23/10 10:5 CCME ⁽³⁾
n Situ Parameters				
Conductivity (uS/cm) Oxygen Dissolved	152	110 5.78		
Oxygen Dissolved %	19.4	43		
pH	8.44	8.63	6.5 to 9	6.5 to 9
Redox Potential (mV) Specific Conductivity (uS/cm)	-76.7	189		
Temperature (°C)	5.51	3.22		
Physical Tests Acidity to pH 8.3 (as CaCO3)	<1	<1		
Bicarbonate Alkalinity (as CaCO3)	88.9	43.6		
Carbonate Alkalinity (as CaCO3)	6.7	62		
Hydroxide Alkalinity (as CaCO3) Total Alkalinity (as CaCO3)	<1 95.5	<1 106		
Color (TCU)	9.3	<5		
Conductivity (uS/cm)	218	194		
Hardness (as CaCO3) pH	61.4 8.36	79.9 8.62	6.5.to 0	6.5.to 0
Total Dissolved Solids	137	117	6.5 to 9	6.5 to 9
Total Suspended Solids	1040	2030		
Turbidity (NTU) Dissolved Anions	1080	543		
Bromide	<0.05	<0.05		[
Chloride	0.51	<0.5	600	
Fluoride	0.098	0.08	0.2 to 0.3 ⁽⁷⁾	
Sulphate lutrients	31.6	28.2	100	L
Ammonia (as N)	0.0145	<0.02	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	0.0088	< 0.005	200	13
Nitrite (as N) Nitrogen (Total)	<0.001 0.57	<0.001 0.056	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total Kjeldahl)	0.563	0.036	1	
Phosphate (Total; as P)	0.088	1.41		
Phosphorus (Dissolved) Phosphorus (Total)	<0.3 1.03	<0.3		
Dissolved Metals	1.00		·	I
Aluminum	0.422	0.0023	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	0.00057 0.00658	0.00047 0.0162		
Barium	QA/QC	0.0162	0.005	0.005
Beryllium	<0.0025	< 0.0005	0.0053	
Bismuth	<0.0025	< 0.0005		
Boron Cadmium	<0.05 <0.000085	0.049	1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 (
Calcium	15.1	17.4	10	10 10 1000
Chromium	0.0034	<0.0005		
Cobalt	< 0.0005	< 0.0001	0.11	(7)
Copper Iron	0.00398	0.00017 <0.03	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾ 0.3
Lead	0.00033	<0.00005	0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium	<0.025	<0.005		
Magnesium	5.73	8.85	(7)	
Manganese Mercury	0.0287	0.00445	(0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001	0.000026
Molybdenum	QA/QC	0.0155	2	0.073
Nickel	<0.0025	0.0012	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium Selenium	1.99 <0.0005	1.22 <0.0001	0.002	0.001
Silicon	6.01	4.34	0.002	0.001
Silver	<0.00005	<0.00001	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	17.9	6.9		
Strontium Thallium	0.206	0.237	0.0003	0.0008
Tin	<0.0005	<0.0001	0.0000	0.0000
Titanium	0.022	< 0.01		
Uranium Vanadium	0.000809 <0.005	0.000727 0.0012	0.006	
Zinc	0.0078	0.002	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
otal Metals				
Aluminum	22.8			0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	0.00102 0.0249	l	0.005	0.005
Barium	0.248		5	
Beryllium	<0.0025		0.0053	
Bismuth Boron	<0.0025 0.06		1.2	
Cadmium	0.000417	1	1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000
Calcium	47.9			
Chromium Cobalt	0.154 0.0226		0.11	
Copper	0.0228	t	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron	30.9		1	0.3
Lead	0.0132		0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium Magnesium	<0.025 24.5		1	
Manganese	0.671		(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	0.000012		0.0001	0.000026
Molybdenum	0.0369		2	0.073
Nickel Potassium	0.117 4.55		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	0.0011		0.002	0.001
Silicon	45.7			
Silver	0.00243		0.0001 to 0.003 ⁽⁷⁾	0.0001
	18.1 0.352		1	l
Sodium Strontium			0.0003	0.0008
Strontium Thallium	<0.0005			
Strontium Thallium Tin	0.00125			
Strontium Thallium Tin Titanium	0.00125 1.03			
Strontium Thallium Tin	0.00125		0.006	

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BOWQG - BOWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH AND CCME: AQUATIC INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. MARDNESS (no 20070) DEFENDITION

Implicates the value exceed
 TharDNESS (as cacO3) DEPENDENT
 B. pH (IN SITU) DEPENDENT
 TEMPERATURE (IN SITU) DEPENDENT
 CHLORIDE (DISSOLVED) DEPENDENT
 I1. pH DEPENDENT

0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-3A

Date Sampled Time Sampled	30-Sep-08	2-Oct-09 1:18 PM	BCWQG ⁽²⁾	CCME ⁽³⁾
n Situ Parameters				
Conductivity (uS/cm) Oxygen Dissolved	239	321 4.01		
Oxygen Dissolved (%)	45.8	1.32		
pH Redox Potential (mV)	7.61	7.74	6.5 to 9	6.5 to 9
Specific Conductivity (uS/cm)		513		
Temperature (°C)	5.21	5.88		
hysical Tests Acidity to pH 8.3 (as CaCO3)	<1	5.5		
Bicarbonate Alkalinity (as CaCO3)	115	111		
Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3)	<1 <1	<2 <2		
Total Alkalinity (as CaCO3)	115	111		
Color (TCU)	<5	<5		
Conductivity (uS/cm) Hardness (as CaCO3)	243 109	534 236		
рН	8.25	7.9	6.5 to 9	6.5 to 9
Total Dissolved Solids Total Suspended Solids	146 21	351 3.7		
Turbidity (NTU)	13.5	4.03		
issolved Anions	.0.05	-0.05		
Bromide Chloride	<0.05 <0.5	<0.05 4.32	600	
Fluoride	0.031	0.125	0.2 to 0.3 ⁽⁷⁾	
Sulphate	16.6	159	100	
Ammonia (as N)	<0.005	<0.005	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	0.121	0.0843	200	13
Nitrite (as N)	<0.001	<0.001	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total) Nitrogen (Total Kjeldahl)	0.17 <0.050	0.1 <0.05		
Phosphate (Total; as P)	0.0184	0.006		
Phosphorus (Dissolved) Phosphorus (Total)	<0.3	<0.3		
issolved Metals	<0.3		·	
Aluminum	0.0284	0.0054	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2))} (11)	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	0.00101 0.00138	0.00061 0.00114	0.005	0.005
Barium	QA/QC	0.155	5	0.005
Beryllium	< 0.0005	<0.0005	0.0053	
Bismuth Boron	<0.0005 0.018	<0.0005 0.064	1.2	
Cadmium	0.000034	<0.00001	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Calcium	33.8	72.4		
Cobalt	0.00151 0.00015	0.00104 <0.0001	0.11	
Copper	0.00520	0.0005	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron	0.033	<0.03	0.35	0.3
Lead Lithium	<0.0005 <0.005	<0.00005 <0.005	0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Magnesium	6.03	<0.005		
Manganese	0.0183	0.00623	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury Molybdenum	0.000014 QA/QC	<0.00001 0.0623	0.0001	0.000026
Nickel	0.00144	< 0.0023	2 0.025 to 0.150 ⁽⁷⁾	0.073 0.025 to 0.15 ⁽⁷⁾
Potassium	0.737	1.1	0.023 10 0.130	0.020 10 0.10
Selenium Silicon	0.00021 3.55	0.00019 3.57	0.002	0.001
Silver	<0.00001	<0.00001	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	4.5	19.5	0.000110 0.000	
Strontium	0.384	2.11		
Thallium Tin	<0.0001 0.00018	<0.0001 <0.0001	0.0003	0.0008
Titanium	<0.01	<0.01		
Uranium Vanadium	0.00398 <0.001	0.0108	0.006	
Zinc	0.0031	0.0021	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
otal Metals			(
Aluminum	0.747			0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	0.00031 0.00058		0.005	0.005
Barium	0.0772		5	
Beryllium Bismuth	<0.0005 <0.0005		0.0053	
Boron	0.014		1.2	
Cadmium	0.000366		10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Calcium Chromium	38.2 0.0105			
Cobalt	0.0105		0.11	
Copper	0.0052		(0.094*([Hardness (Dissolved)])+2)/1000 (7)	0.002 to 0.004 ⁽⁷⁾
Iron Lead	0.676 0.000686		1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.3
Lead Lithium	<0.005		0.005 10 8	0.001 to 0.007 ⁽⁷⁾
Magnesium	8.07			
Manganese Mercury	0.0261		(0.01102*[Hardness (Dissolved)])+0.54 (7)	0.000000
Mercury Molybdenum	0.00874		0.0001	0.000026 0.073
Nickel	0.0105		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium	0.898			
Selenium Silicon	0.00032		0.002	0.001
Silver	0.000521		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	2.3			
Strontium Thallium	0.154 <0.0001		0.0003	0.0008
Tin	0.0004			
Titanium	0.033			
Uranium Vanadium	0.000627		0.006	
			(m)	0.03
Zinc	0.0081		(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 (/)	0.05

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. MARDNEES (no COCORD LEDEENIENT

6. <u>Deven</u> INDICATES THE VALUE EXCEED 7. HARDNESS (as CaCO3) DEPENDENT 8. pH (IN SITU) DEPENDENT. 9. TEMPERATURE (IN SITU) DEPENDENT. 10. CHLORIDE (DISSOLVED) DEPENDENT. 11. pH DEPENDENT.

[0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
[REV	DATE	DESCRIPTION	PREP'D	CHK D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-3B

ate Sampled	20 6 00	2-Oct-09		Print Mar/23/10 10
ate Sampled me Sampled	30-Sep-08	2-Oct-09 10:12 AM	BCWQG ⁽²⁾	CCME ⁽³⁾
Situ Parameters Conductivity (uS/cm)	186	132		
Oxygen Dissolved		6.02		
Oxygen Dissolved % pH	70.4	47.6 7.88	0.5 to 0	0.5 += 0
Redox Potential (mV)	83.2	257	6.5 to 9	6.5 to 9
Specific Conductivity (uS/cm)	0.7	212		
Temperature (°C) nysical Tests	9.7	5.29		
Acidity to pH 8.3 (as CaCO3)	<1	3		
Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3)	92.6 <1	100 <2		
Hydroxide Alkalinity (as CaCO3)	<1	<2		
Total Alkalinity (as CaCO3)	92.6	100		
Color (TCU) Conductivity (uS/cm)	<5 184	<5 211		
Hardness (as CaCO3)	86.6	103		
рН	8.23	8.15	6.5 to 9	6.5 to 9
Total Dissolved Solids Total Suspended Solids	107 357	117 6.2		
Turbidity (NTU)	365	5.44		
ssolved Anions				
Bromide Chloride	<0.05	< 0.05	<u></u>	
Fluoride	<0.5 <0.02	<0.5 <0.02	600 0.2 to 0.3 ⁽⁷⁾	
Sulphate	9.71	8.97	100	
itrients	-		(0.5)	
Ammonia (as N) Nitrate (as N)	<0.005 0.0568	<0.005 0.0339	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Jitrate (as N)	<0.001	<0.003	200 0.06 to 0.6 ⁽¹⁰⁾	13 0.06
Jitrogen (Total)	0.17			
Nitrogen (Total Kjeldahl)	0.113	< 0.05		
Phosphate (Total; as P) Phosphorus (Dissolved)	0.446	0.011 <0.3		
Phosphorus (Total)	0.45			
ssolved Metals			(4.000.0.400H-10.0.000H-10/0). (11)	
Aluminum Antimony	0.0584 0.00013	0.0026	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2))} (11)	0.005 to 0.1 ⁽¹¹⁾
Arsenic	0.00013	0.00047	0.005	0.005
Barium	QA/QC	0.0621	5	
Beryllium Bismuth	<0.0005 <0.0005	<0.0005 <0.0005	0.0053	
Boron	<0.01	0.01	1.2	
Cadmium	<0.000017	<0.00001	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000
Calcium	27.3	32.5		
Chromium Cobalt	0.00101 <0.0001	0.00087 <0.0001	0.11	
Copper	0.103	0.00023	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
ron	0.074	<0.03	0.35	0.3
Lead	0.00007	< 0.00005	0.003 to e ^{(1.273*ln([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium Magnesium	<0.005 4.47	<0.005 5.26		
Manganese	0.00772	0.000209	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	<0.00001	<0.00001	0.0001	0.000026
Nolybdenum	QA/QC	0.00142	2	0.073
vickel	<0.0005	<0.0005 0.65	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	0.00021	<0.0001	0.002	0.001
Silicon	2.41	2.29	(7)	
Silver Sodium	<0.00001 2.6	<0.00001 <2	0.0001 to 0.003 ⁽⁷⁾	0.0001
Strontium	0.119	0.12		
hallium	<0.0001	<0.0001	0.0003	0.0008
în	<0.0001	<0.0001		
Titanium Jranium	<0.01 0.000169	<0.01 0.000163		
anadium	<0.001	<0.001	0.006	
inc	0.0013	<0.001	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 (7)	0.03
tal Metals	16.6			0.005 to 0.4 (11)
Iuminum Intimony	16.6 0.0004			0.005 to 0.1 ⁽¹¹⁾
Arsenic	0.0102		0.005	0.005
larium tervilium	0.206		5	
eryllium ismuth	<0.0005 <0.0005		0.0053	
oron	0.017		1.2	
admium	0.000289		10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000
Calcium Chromium	33.9 0.047			
Cobalt	0.047		0.11	
Copper	0.103		(0.094*([Hardness (Dissolved)])+2)/1000 (7)	0.002 to 0.004 ⁽⁷⁾
on	16.9		1 0 000	0.3
ead ithium	0.00493 0.0074		0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
lagnesium	21.2			
anganese	1.13		(0.01102*[Hardness (Dissolved)])+0.54 (7)	
lercury lolybdenum	0.000015 0.00213		0.0001	0.000026
ickel	0.00213		2 0.025 to 0.150 ⁽⁷⁾	0.073 0.025 to 0.15 ⁽⁷⁾
otassium	3.04			
elenium	0.00047		0.002	0.001
illicon	31.9			0.0004
ilver odium	0.00012 2.7		0.0001 to 0.003 ⁽⁷⁾	0.0001
trontium	0.13			
hallium	<0.0001		0.0003	0.0008
ïn ïtanium	0.00029 0.624			
Jranium	0.000385			
· · ·	0.0466	r	0.006	
'anadium inc	0.0563		(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 (7)	0.03

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. HARDNESS (as CaCCO3) DEPENDENT 8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (INSIGNLVED) DEPENDENT 11. CH DEPENDENT

12. 04/02 INDICATES THE VALUE EXCEEDED QUALITY ASSURANCE AND QUALITY CONTROL OBJECTIVES.

0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-4A

ate Sampled	1-Oct-08	4-Oct-09 2:22 PM	BCWQG ⁽²⁾	Print Mar/23/10 10:5 CCME ⁽³⁾
me Sampled Situ Parameters				
Conductivity (uS/cm)	4268	2032		
Oxygen Dissolved Oxygen Dissolved %	28.5	0.97		
рН	12.8	12.8	6.5 to 9	6.5 to 9
Redox Potential (mV) Temperature (°C)	-146 5.97	8.81		
hysical Tests	5.51	0.01		
Acidity to pH 8.3 (as CaCO3)	<1	<1		
Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3)	<1 124	<1 124		
Hydroxide Alkalinity (as CaCO3)	630	326		
Total Alkalinity (as CaCO3)	754	451		
Color (TCU) Conductivity (uS/cm)	13.4 3090	<5 2500		
Hardness (as CaCO3)	484	336		
pH	12	11.9	6.5 to 9	6.5 to 9
Total Dissolved Solids Total Suspended Solids	989 63.1	841 46.2		
Turbidity (NTU)	20.9	61.5		
issolved Anions		-		
Bromide Chloride	<0.5	<0.5 5.87	600	
Fluoride	1.44	1.06	0.2 to 0.3 ⁽⁷⁾	
Sulphate	83.8	42.2	100	
utrients	0.005 (0.0700		0 0 1 0 C 1 (0 0)
Ammonia (as N) Nitrate (as N)	0.0654	0.0733 0.184	0.681 to 28.3 ^(8,9) 200	0.0168 to 185 ^(8,9) 13
Nitrite (as N)	<0.01	<0.01	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total)	0.67	0.37		
Nitrogen (Total Kjeldahl) Phosphate (Total; as P)	0.564 0.0553	0.328		
Phosphorus (Dissolved)	<0.3	<0.3		
Phosphorus (Total)	<0.3	L		
issolved Metals	0.24	0.245	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 +- 0.4 (11)
Aluminum Antimony	0.24	0.245	U.1 to evide 2420 (ph) 0200 (ph)(2)) (1)	0.005 to 0.1 ⁽¹¹⁾
Arsenic	0.00173	0.00255	0.005	0.005
Barium	QA/QC	0.35	5	
Beryllium Bismuth	<0.0025 <0.0025	<0.001 <0.001	0.0053	
Boron	0.107	0.075	1.2	
Cadmium	<0.001	< 0.0004	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000
Calcium Chromium	194 0.0238	135 0.0066		
Cobalt	<0.0005	<0.0002	0.11	
Copper	0.0117	0.0044	(0.094*([Hardness (Dissolved)])+2)/1000 (7)	0.002 to 0.004 ⁽⁷⁾
Iron Lead	0.054	<0.03 0.00023	0.35	0.3
Lithium	0.058	0.00023	0.003 to e ^{(1.273'In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Magnesium	0.06	0.084		
Manganese	0.00206	0.00013	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury Molybdenum	0.000011 QA/QC	0.000016 0.19	0.0001	0.000026 0.073
Nickel	<0.0025	<0.001	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium	27.9	13.3		
Selenium Silicon	0.00099 2.46	0.00034 2.71	0.002	0.001
Silver	<0.00005	<0.00002	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	207	156		
Strontium	5.02	4.01	0.0000	0.0000
Thallium Tin	<0.0005 0.00318	<0.0002 0.00029	0.0003	0.0008
Titanium	0.01	<0.01		
Uranium	<0.00005	0.000769		
Vanadium Zinc	<0.005 0.0091	0.0037 0.0024	0.006	0.03
otal Metals	0.0031	0.0024	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 (7)	0.03
Aluminum	0.714			0.005 to 0.1 (11)
Antimony	0.00206 0.00204		0.005	
Arsenic Barium	0.00204		0.005 5	0.005
Beryllium	<0.0025		0.0053	
Bismuth	<0.0025			
Boron Cadmium	0.1 <0.001		1.2 10 ^{(0.86*(log([Hardness (Dissolved]]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000
Calcium	190			10 71000
Chromium	0.0529			
Cobalt Copper	0.00184 0.0171		0.11 (0.004*/[Hordpace (Disselved)])+2\/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
ron	0.782		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1	0.002 to 0.004 (*) 0.3
.ead	0.00215		0.003 to e ^{(1.273*ln([Hardness (Dissolved)])-1.460})1000 (7)	0.001 to 0.007 ⁽⁷⁾
.ithium Magnesium	0.057 0.598			
Manganese	0.0233		(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	<0.00001		0.0001	0.000026
Molybdenum	0.323		2	0.073
Nickel Potassium	0.0238		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	0.00128		0.002	0.001
Silicon	3.48			
Silver	0.000405		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	202 4.79			
		1	0.0003	0.0008
Strontium	<0.0005			
Strontium Fhallium Fin	0.00349			
Strontium Thallium Tin Titanium	0.00349 0.038			
Strontium Thallium Tin	0.00349		0.006	

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. COME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 3. BOLD CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 5. BOLD INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH INITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH AND CCME: AQUATIC INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. HARDNESS (as CaCO3) DEPENDENT

7. HARDNESS (as CaCO3) DEPENDENT 8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT

10. CHLORIDE (DISSOLVED) DEPENDENT 11. pH DEPENDENT

[0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-4B

Date Sampled Time Sampled	1-Oct-08	4-Oct-09 11:36 AM	BCWQG ⁽²⁾	CCME ⁽³⁾
n Situ Parameters Conductivity (uS/cm)	3193	124		
Oxygen Dissolved	5135	2.8		
Oxygen Dissolved %	27	21.3 9.39	05100	054-0
pH Redox Potential (mV)	7.66	9.39	6.5 to 9	6.5 to 9
Specific Conductivity (uS/cm)		212		
Temperature (°C) Physical Tests	5.24	3.1		
Acidity to pH 8.3 (as CaCO3)	<1	<1		
Bicarbonate Alkalinity (as CaCO3)	<1	92.5		
Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3)	66.3 463	36.2 <1		
Total Alkalinity (as CaCO3)	530	129		
Color (TCU)	9.1	<5		
Conductivity (uS/cm) Hardness (as CaCO3)	2620 589	219 106		
pH	11.9	9.05	6.5 to 9	6.5 to 9
Total Dissolved Solids	702	141		
Total Suspended Solids Turbidity (NTU)	134 36.2	24.7 17		
vissolved Anions				
Bromide	<0.5	<0.05 <0.5	<u> </u>	
Chloride Fluoride	<5 <0.2	0.045	600 0.2 to 0.3 ⁽⁷⁾	
Sulphate	8.7	6.89	100	
lutrients		0.0404	(9.0)	/0.0\
Ammonia (as N) Nitrate (as N)	0.0166 <0.05	0.0181 0.0236	0.681 to 28.3 ^(8,9) 200	0.0168 to 185 ^(8,9) 13
Nitrite (as N)	<0.01	<0.0230	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total)	0.28	0.17		
Nitrogen (Total Kjeldahl) Phosphate (Total: as P)	0.280	0.15 0.0249		
Phosphate (Total; as P) Phosphorus (Dissolved)	<0.3	<0.3		
Phosphorus (Total)	<0.3		İ	
Dissolved Metals		0.0005	(1 200-2 428*[hH]+0 288*[hH]/0)\ (41)	(11)
Aluminum Antimony	0.308	0.0265	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Arsenic	0.00084	0.00147	0.005	0.005
Barium	QA/QC	0.0942	5	
Beryllium Bismuth	<0.0025 <0.0025	<0.0005 <0.0005	0.0053	
Boron	<0.05	0.018	1.2	
Cadmium	0.00012	0.000028	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷
Calcium Chromium	236 0.0361	32.5 0.00329		
Cobalt	< 0.0005	<0.0001	0.11	
Copper	0.0146	0.00924	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron	<0.03	<0.03	0.35	0.3
Lead Lithium	0.00032	0.000054 <0.005	0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460})1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Magnesium	0.039	6.03		
Manganese	0.00079	0.00273	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	<0.00001 QA/QC	<0.00001 0.00885	0.0001	0.000026
Molybdenum Nickel	<0.0025	0.00885	2 0.025 to 0.150 ⁽⁷⁾	0.073 0.025 to 0.15 ⁽⁷⁾
Potassium	5.91	1.49	0.023 10 0.130	0.023 10 0.13
Selenium	0.00144	0.00038	0.002	0.001
Silicon Silver	2.59 <0.00005	6.76 <0.00001	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	19.7	6.2	0.000110 0.003	0.0001
Strontium	4	0.731		
Thallium Tin	<0.0005 0.00267	<0.0001 0.00046	0.0003	0.0008
Titanium	0.011	<0.01		
Uranium	<0.00005	0.0102		
Vanadium Zinc	<0.005 <0.005	0.002	0.006	0.03
fotal Metals	<0.005	0.0025	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Aluminum	1.01	1		0.005 to 0.1 ⁽¹¹⁾
Antimony	0.00283		A	
Arsenic Barium	0.00189 0.805		0.005	0.005
Beryllium	<0.0025		0.0053	
Bismuth	<0.0025			
Boron Cadmium	<0.05 0.0002		1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷
Calcium	303		10	1000 (*
Chromium	0.0554			
Cobalt	0.00136		0.11	(7)
Copper Iron	0.0146		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾ 0.3
Lead	0.00201		0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460})1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium	<0.025			
Magnesium Manganese	1.5 0.0308		(0.01102*/Hordpoor (Disselved))) - 0.54 ⁽⁷⁾	
Manganese Mercury	<0.00001		(0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001	0.000026
Molybdenum	0.0368		2	0.073
Nickel	0.0172		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium Selenium	6.24 0.00143		0.002	0.001
Silicon	6.37		0.002	0.001
Silver	0.000531		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium Stroptium	18.2			
Strontium Thallium	4.32		0.0003	0.0008
Tin	0.00191			
Titanium	0.038			
Uranium Vanadium	0.000147 0.0078		0.006	
Zinc	0.0201		(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 (7)	0.03

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH LIMITS. 8. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH AND CCME: AQUATIC INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH AND CCME: AQUATIC LIFE: FRESH LIMITS. 8. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH AND CCME: AQUATIC INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 8. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH AND CCME: AQUATIC INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 8. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH AND CCME: AQUATIC INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. HARDNESS (AS CACO3) DEPENDENT

6. Concerning the value exceed 7. HARDNESS (as CaCO3) DEPENDENT 8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 11. pH DEPENDENT

Γ	0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
Γ	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-5A

ate Sampled	1-Oct-08		Print Mar/23/10 10:
ime Sampled	1-001-08	BCWQG ⁽²⁾	CCME ⁽³⁾
hysical Tests Acidity to pH 8.3 (as CaCO3)	<1		
Bicarbonate Alkalinity (as CaCO3)	73		
Carbonate Alkalinity (as CaCO3)	<1		
Hydroxide Alkalinity (as CaCO3) Total Alkalinity (as CaCO3)	73		
Color (TCU)	<5		
Conductivity (uS/cm)	189		
Hardness (as CaCO3) pH	70 8.2	6.5 to 9	6.5 to 9
Total Dissolved Solids	113	0.5 10 9	0.5 10 9
Total Suspended Solids	<3		
Turbidity (NTU) issolved Anions	1.03		
Bromide	<0.05		
Chloride	<0.5	600	
Fluoride	0.069	0.2 to 0.3 ⁽⁷⁾	
Sulphate utrients	25.2	100	
Ammonia (as N)	<0.005	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	<0.005	200	13
Nitrite (as N)	<0.001	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total)	< 0.05		
Nitrogen (Total Kjeldahl) Phosphate (Total; as P)	<0.050 0.007	<u>├</u> ─────────┤──	
Phosphorus (Dissolved)	<0.3	<u> </u>	
Phosphorus (Total)	<0.3		
ssolved Metals		14 000 0 1000 11 0 0000 1000 1000	
Aluminum	0.346	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	<0.0001 0.00067	0.005	0.005
Barium	QA/QC	5	0.000
Beryllium	<0.0005	0.0053	
Bismuth Boron	<0.0005 0.017	4.0	
Boron Cadmium	0.017	1.2 10 ^{(0.36*(log([Hardness (Dissolved)]])-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾
Calcium	21.5	10 10 10 10 10 10	10 / 1000 / 1000
Chromium	0.00054		
Cobalt	0.00031	0.11	
Copper	0.00697	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
ron Lead	0.000092	0.35 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾	0.3
Lithium	<0.005		0.001 to 0.007 ⁽⁷⁾
Magnesium	3.99		
Manganese	0.0214	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury Molybdenum	<0.00001 QA/QC	0.0001	0.000026
Nickel	0.00084	2 0.025 to 0.150 ⁽⁷⁾	0.073 0.025 to 0.15 ⁽⁷⁾
Potassium	0.406	0.025 10 0.150 **	0.025 10 0.15
Selenium	0.00018	0.002	0.001
Silicon	5.51		
Silver Sodium	0.000042	0.0001 to 0.003 ⁽⁷⁾	0.0001
Strontium	0.1		
Thallium	<0.0001	0.0003	0.0008
Tin	<0.0001		
Titanium	0.02		
Uranium Vanadium	0.000347 0.0034	0.006	
Zinc	0.0026	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
tal Metals			
Aluminum	0.131		0.005 to 0.1 ⁽¹¹⁾
Antimony	< 0.0001	0.005	0.005
Arsenic Barium	0.00071 QA/QC	0.005 5	0.005
Beryllium	<0.0005	0.0053	
Bismuth	<0.0005		
Boron	0.019	1.2	() 86*(Ing(Hardnace (Discolution)) 2.2) (7)
Cadmium Calcium	0.00003 22.7	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾
Chromium	<0.0005	<u> </u>	
Cobalt	<0.0001	0.11	
Copper	0.00028	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
ron	0.05	1 (1273*[n/(Hardness /Discolvad)])-1.460\	0.3
Lead Lithium	<0.00005 <0.005	0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460})1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Agnesium	4.35	<u> </u>	
langanese	0.00595	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Aercury	<0.00001	0.0001	0.000026
/lolybdenum Jickel	QA/QC <0.0005	2	0.073
Nickel Potassium	<0.0005	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	0.00027	0.002	0.001
Silicon	4.98		
Silver	<0.00001	0.0001 to 0.003 ⁽⁷⁾	0.0001
Strontium	10.4		
Strontium Thallium	0.103 <0.0001	0.0003	0.0008
	<0.0001	0.0003	0.000
1 11 1			
litanium	<0.01		
Titanium Jranium	0.000371		
Tin Titanium Uranium Vanadium Zinc		0.006 (33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED.

1. ONTO ARE HIGH_UNLESS OTHERWISE STATED.
2. BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006).
3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006).
4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS.
5. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS.
6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS.
7. HARDNESS (as CaC03) DEPENDENT
7. HARDNESS
7. HARDNESS (as CaC03) DEPENDENT
7. HARDNESS

8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT

3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006).

ſ	0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
[REV	DATE	DESCRIPTION	PREP'D	CHKD	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-5B

	••••••	LE LOCATION RESUS-SB	Print Mar/23/10 10:53:3
Date Sampled	1-Oct-08	BCWQG ⁽²⁾	CCME ⁽³⁾
Time Sampled In Situ Parameters		201140	COME
Conductivity (uS/cm)	252		
Oxygen Dissolved (%)	7.8		
pH	7.41		
Redox Potential (mV)	-286		
Physical Tests	1 4		
Acidity to pH 8.3 (as CaCO3)	<1 113		
Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3)	<1		
Hydroxide Alkalinity (as CaCO3)	<1		
Total Alkalinity (as CaCO3)	113		
Color (TCU)	10.5		
Conductivity (uS/cm)	243		
Hardness (as CaCO3)	106		
pH Total Dissolved Selida	8.18 168	6.5 to 9	6.5 to 9
Total Dissolved Solids Total Suspended Solids	1030		
Turbidity (NTU)	>4000		
Dissolved Anions	1000		
Bromide	<0.05		
Chloride	1.37	600	
Fluoride	0.055	0.2 to 0.3 ⁽⁷⁾	
Sulphate	21.2	100	
Nutrients	0.005	(8.0)	(9.0)
Ammonia (as N)	<0.005	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	<0.005 <0.001	200 0.06 to 0.6 ⁽¹⁰⁾	<u>13</u> 0.06
Nitrite (as N) Nitrogen (Total)	<0.001	0.06 to 0.6 ⁽¹⁰⁾	0.00
Nitrogen (Total Kjeldahl)	<0.25	<u> </u>	
Phosphate (Total; as P)	2.36	<u> </u>	
Phosphorus (Dissolved)	<0.3		
Phosphorus (Total)	2.77		
Dissolved Metals		(4.000.0.400tfallin0.000tfall/00) (44)	/44\
Aluminum	0.164	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	<0.001 <0.001	0.005	0.005
Barium	QA/QC	0.005	0.005
Beryllium	<0.005	0.0053	
Bismuth	<0.005		
Boron	<0.1	1.2	
Cadmium	0.00025	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} 1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Calcium	32.8		
Chromium	<0.005		
Cobalt	<0.001	0.11	(7)
Copper	0.0076	(0.094*([Hardness (Dissolved)])+2)/1000 (/)	0.002 to 0.004 ⁽⁷⁾
Iron	0.224	0.35 0.003 to e ^{(1.273*In[[Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾	0.3
Lead Lithium	<0.0005 <0.05	0.003 to e(1270 m((haldines (sisterice))) (1000 (f)	0.001 to 0.007 ⁽⁷⁾
Magnesium	5.85		
Manganese	0.221	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	<0.00001	0.0001	0.000026
Molybdenum	QA/QC	2	0.073
Nickel	<0.005	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium	1.08		
Selenium	<0.001	0.002	0.001
Silicon	4.92		
Silver	<0.0001	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	8.3		
Strontium Thallium	0.145 <0.001	0.0003	0.0008
Tin	<0.001	0.0003	0.0008
Titanium	0.01		
Uranium	0.00016		
Vanadium	<0.01	0.006	
Zinc	<0.01	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 (7)	0.03
Total Metals			
Aluminum	70.7		0.005 to 0.1 ⁽¹¹⁾
Antimony	< 0.001	0.007	
Arsenic Barium	0.0242 0.489	0.005	0.005
Beryllium	<0.005	5 0.0053	
Bismuth	<0.005	0.0000	
Boron	<0.1	1.2	
Cadmium	0.00085	10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2)} 1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} 1000 ⁽⁷⁾
Calcium	92.7		
Chromium	0.119		
Cobalt	0.0603	0.11	
	1.21	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Copper			
Copper Iron	91.2	1	0.3
Copper Iron Lead	91.2 0.014	1 0.003 to e ^{(1.273*In([Hardness (Dissolved]])-1.460})1000 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾
Copper Iron Lead Lithium	91.2 0.014 <0.05	1	
Copper Iron Lead Lithium Magnesium	91.2 0.014 <0.05 59	1 0.003 to e ^{(1.273*In[[Hardness (Dissolved)]]-1.460} }1000 ⁽⁷⁾	
Copper Iron Lead Lithium	91.2 0.014 <0.05	1 0.003 to e ^{(1.273*ln[[Hardness (Dissolved)]]-1.460})1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)]]+0.54 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Copper Iron Lead Lithium Magnesium Manganese	91.2 0.014 <0.05 59 2.5	1 0.003 to e ^{(1.273*ln[[Hardness (Dissolved)]]-1.460} }1000 ⁽⁷⁾	
Copper Iron Lead Lithium Magnesium Manganese Mercury	91.2 0.014 <0.05 59 2.5 0.000031	1 0.003 to e ^{(1.273*In[[Hardness (Dissolved]])-1.460} /1000 ⁽⁷⁾ (0.01102*[[Hardness (Dissolved]]])+0.54 ⁽⁷⁾ 0.0001	0.001 to 0.007 ⁽⁷⁾ 0.000026
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum	91.2 0.014 <0.05 59 2.5 0.000031 0.0753 0.143 5.95	1 0.003 to e ^{(1.273*In[[Hardness (Dissolved]])-1.460})1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved]])+0.54 ⁽⁷⁾ 0.0001 2	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium	91.2 0.014 <0.05 59 2.5 0.000031 0.0753 0.143 5.95 0.0024	1 0.003 to e ^{(1.273*In[[Hardness (Dissolved]])-1.460})1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved]])+0.54 ⁽⁷⁾ 0.0001 2	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon	91.2 0.014 <0.05 59 2.5 0.000031 0.0753 0.143 5.95 0.0024 89.6	1 0.003 to e ^{(1.273'In[[Hardness (Dissolved]])-1.460} /1000 ⁽⁷⁾ (0.01102*[[Hardness (Dissolved]]])+0.54 ⁽⁷⁾ 0.0001 2 0.002 0.025 to 0.150 ⁽⁷⁾ 0.002	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Selenium Silicon	91.2 0.014 <0.05 59 2.5 0.000031 0.0753 0.143 5.95 0.0024 89.6 0.00827	1 0.003 to e ^{(1.273*In[[Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾ (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001 2 0.025 to 0.150 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Selenium Silicon Siliver Sodium	91.2 0.014 <0.05	1 0.003 to e ^{(1.273'In[[Hardness (Dissolved]])-1.460} /1000 ⁽⁷⁾ (0.01102*[[Hardness (Dissolved]]])+0.54 ⁽⁷⁾ 0.0001 2 0.002 0.025 to 0.150 ⁽⁷⁾ 0.002	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium	91.2 0.014 <0.05 59 2.5 0.000031 0.0753 0.143 5.95 0.0024 89.6 0.00827 12.3 0.327	1 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} 1000 ⁽⁷⁾ 1 (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 1 0.0001 0.0001 2 0 0.025 to 0.150 ⁽⁷⁾ 1 0.002 1 0.0001 to 0.003 ⁽⁷⁾ 1	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Silver Sodium Strontium Thallium	91.2 0.014 <0.05 59 2.5 0.000031 0.0753 0.143 5.95 0.0024 89.6 0.00827 12.3 0.327 <0.001	1 0.003 to e ^{(1.273'In[[Hardness (Dissolved]])-1.460} /1000 ⁽⁷⁾ (0.01102*[[Hardness (Dissolved]]])+0.54 ⁽⁷⁾ 0.0001 2 0.002 0.025 to 0.150 ⁽⁷⁾ 0.002	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Siliver Sodium Strontium	91.2 0.014 <0.05	1 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} 1000 ⁽⁷⁾ 1 (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 1 0.0001 0.0001 2 0 0.025 to 0.150 ⁽⁷⁾ 1 0.002 1 0.0001 to 0.003 ⁽⁷⁾ 1	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Silicon Silicon Silicon Silicon Thallium Thallium Titanium Uranium	91.2 0.014 <0.05	1 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} 1000 ⁽⁷⁾ 1 (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 1 0.0001 2 1 0.025 to 0.150 ⁽⁷⁾ 1 1 0.002 1 1 0.0001 to 0.003 ⁽⁷⁾ 1 1 0.0003 1 1	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Siliver Sodium Strontium Thallium Tin Titanium Uranium	91.2 0.014 <0.05	1 1 0.003 to e ^{(1.273'In[[Hardness (Dissolved]])-1.460]} 1000 ⁽⁷⁾ 1 (0.01102*[[Hardness (Dissolved]]])+0.54 ⁽⁷⁾ 1 0.0001 2 1 0.0025 to 0.150 ⁽⁷⁾ 1 0.0001 to 0.003 ⁽⁷⁾ 1 0.0001 to 0.003 ⁽⁷⁾ 1 0.0001 to 0.003 ⁽⁷⁾ 1 0.0003 1 0.0006 1	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001 0.0008
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Siliver Sodium Strontium Thallium Tin Titanium Uranium Vanadium Zinc	91.2 0.014 <0.05	1 1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} 1000 ⁽⁷⁾ 1 (0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 1 0.0001 2 1 0.025 to 0.150 ⁽⁷⁾ 1 0.002 1 1 0.0001 to 0.003 ⁽⁷⁾ 1 1 0.0003 1 1	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001
Copper Iron Lead Lithium Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silicon Siliver Sodium Strontium Thallium Tin Titanium Uranium	91.2 0.014 <0.05	1 1 0.003 to e ^{(1.273'In[[Hardness (Dissolved]])-1.460]} 1000 ⁽⁷⁾ 1 (0.01102*[[Hardness (Dissolved]]])+0.54 ⁽⁷⁾ 1 0.0001 2 1 0.0025 to 0.150 ⁽⁷⁾ 1 0.0001 to 0.003 ⁽⁷⁾ 1 0.0001 to 0.003 ⁽⁷⁾ 1 0.0001 to 0.003 ⁽⁷⁾ 1 0.0003 1 0.0006 1	0.001 to 0.007 ⁽⁷⁾ 0.000026 0.073 0.025 to 0.15 ⁽⁷⁾ 0.001 0.0001 0.0008

M:\1\01\00329\08\A\Report\1- Hydrogeology\Appendices\Appendix B\B1\[Table B1.1 to B1.16.xls]RES08-5B

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - ACMAE AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE COME: AQUATIC LIFE: FRESH LIMITS. 3. BOLD CME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 3. UNDOCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006).

3. EXAMPLE VALUATE LIFE: FRESH - C 7. HARDNESS (as CaCO3) DEPENDENT 8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 11. pH DEPENDENT

1	0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
1	REV	DATE	DESCRIPTION	PREP'D	CHK/D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-6A

Date Sampled	27-Sep-08	30-Sep-09	BCWQG ⁽²⁾	Print Mar/23/10 10:53 CCME ⁽³⁾
Fime Sampled n Situ Parameters		4:00 PM		
Conductivity (uS/cm) Oxygen Dissolved	390	454 0.93		
Oxygen Dissolved %	37.2	1.2		
pH Redox Potential (mV)	8.37	7.55 20.7	6.5 to 9	6.5 to 9
Specific Conductivity (uS/cm)	-02.2	278		
Temperature (°C)	7.79	4.64		
Physical Tests Acidity to pH 8.3 (as CaCO3)	<1	<1		
Bicarbonate Alkalinity (as CaCO3)	107	99.3		
Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3)	4.6	<2 <2		
Total Alkalinity (as CaCO3)	112	99.3		
Color (TCU)	<5	<5		
Conductivity (uS/cm) Hardness (as CaCO3)	427 97	437 102		
рН	8.3	8.25	6.5 to 9	6.5 to 9
Total Dissolved Solids Total Suspended Solids	277 452	268 3.2		
Turbidity (NTU)	430	3.32		
Dissolved Anions	-0.05	-0.0E		
Bromide Chloride	<0.05 9.87	<0.05 11.1	600	
Fluoride	0.566	0.368	0.2 to 0.3 ⁽⁷⁾	
Sulphate	94.1	102	100	
Iutrients Ammonia (as N)	0.0159	0.0093	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	0.0063	<0.005	200	13
Nitrite (as N)	0.0018	<0.001	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total) Nitrogen (Total Kjeldahl)	0.23	<0.05 <0.05	<u> </u>	
Phosphate (Total; as P)	0.355	0.0072		
Phosphorus (Dissolved)	<0.3	<0.3		
Phosphorus (Total) Dissolved Metals	0.4	1		
Aluminum	0.083	0.0038	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Antimony	<0.001 0.0022	<0.0001 0.00193		
Arsenic Barium	QA/QC	0.00193	0.005 5	0.005
Beryllium	<0.005	<0.0005	0.0053	
Bismuth Boron	<0.005 0.11	<0.0005 0.132	12	
Cadmium	<0.00017	<0.00004	1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})/1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 (
Calcium	20.1	21		
Chromium Cobalt	<0.005 <0.001	<0.0005 <0.0001	0.11	
Copper	0.0024	0.0001	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron	0.083	<0.03	0.35	0.3
Lead	<0.0005	< 0.00005	0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460})1000 (7)	0.001 to 0.007 ⁽⁷⁾
Lithium Magnesium	<0.05	0.0108		
Manganese	0.0182	0.0196	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury Molybdenum	<0.00001 QA/QC	<0.00001 0.0103	0.0001	0.00026
Nickel	0.005	< 0.0005	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium	5.72	5.84		
Selenium Silicon	<0.001 4.47	0.00037 4.51	0.002	0.001
Silver	<0.0001	<0.00001	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	39.8	48.1		
Strontium Thallium	0.5 <0.001	0.661	0.0003	0.0008
Tin	<0.001	<0.0001	0.0003	0.0008
Titanium	<0.01	< 0.01		
Uranium Vanadium	0.00311 <0.01	0.00224	0.006	
Zinc	<0.01	0.0027	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
otal Metals				
Aluminum Antimony	14.5 0.00104		l	0.005 to 0.1 ⁽¹¹⁾
Arsenic	0.00552		0.005	0.005
Barium	0.137		5	
Beryllium Bismuth	<0.001 <0.001	1	0.0053	
Boron	0.124		1.2	
Cadmium	0.000291		10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 (
Calcium Chromium	32.7 0.129		ł	
Cobalt	0.0166		0.11	
Copper	0.0682		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron Lead	21.1 0.00439		1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460})1000 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾
Lithium	0.021			
Magnesium	35.4			
Manganese	0.415		(0.01102*[Hardness (Dissolved)])+0.54 (7)	0.000026
Mercury Molybdenum	0.113		0.0001	0.000026 0.073
Nickel	0.182		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium	5.81 0.00067		0.000	0.004
Selenium Silicon	36.4	1	0.002	0.001
Silver	0.00758		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium	49.4			
Strontium Thallium	0.602	1	0.0003	0.0008
Tin	0.00226			5.0000
Titanium	0.683			
Uranium Vanadium	0.00434 0.0514		0.006	
Zinc	0.0843		(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. HARDNESS (as GaC03) DEPENDENT 7. HARDNESS (as GaC03) DEPENDENT

8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT

11. pH DEPENDENT

0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-6B

SAMPLE LOCATION RES08-6B Print Mar/23/10 10:53:32 Print Mar/23/10 10:53:32						
Date Sampled Time Sampled	27-Sep-08	30-Sep-09 11:15 AM	BCWQG ⁽²⁾	CCME ⁽³⁾		
In Situ Parameters	244	269				
Conductivity (uS/cm) Oxygen Dissolved	244	0.16				
Oxygen Dissolved %	24.9	1.2				
pH Redox Potential (mV)	8.29 -114	6.44 82	6.5 to 9	6.5 to 9		
Specific Conductivity (uS/cm)		165				
Temperature (°C) Physical Tests	5	4.68				
Acidity to pH 8.3 (as CaCO3)	<1	2.5				
Bicarbonate Alkalinity (as CaCO3)	90.1	107				
Carbonate Alkalinity (as CaCO3) Hydroxide Alkalinity (as CaCO3)	4.5 <1	<1 <1				
Total Alkalinity (as CaCO3)	94.7	107				
Color (TCU) Conductivity (uS/cm)	<5 247	<5 264				
Hardness (as CaCO3)	79.5	84.4				
pH Total Dissolved Solida	8.38 200	7.87	6.5 to 9	6.5 to 9		
Total Dissolved Solids Total Suspended Solids	2890	165 53.7				
Turbidity (NTU)	>4000	97				
Dissolved Anions Bromide	<0.05	<0.05				
Chloride	1.64	2.18	600			
Fluoride	0.162	0.108	0.2 to 0.3 ⁽⁷⁾			
Sulphate Nutrients	37.1	35.5	100			
Ammonia (as N)	0.0217	0.0178	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)		
Nitrate (as N)	<0.005	< 0.005	200	13		
Nitrite (as N) Nitrogen (Total)	<0.001 <0.3	<0.001 <0.05	0.06 to 0.6 ⁽¹⁰⁾	0.06		
Nitrogen (Total Kjeldahl)	<0.25	<0.05				
Phosphate (Total; as P) Phosphorus (Dissolved)	2.64 <0.3	0.081 <0.3				
Phosphorus (Dissolved) Phosphorus (Total)	<0.3	<0.3				
Dissolved Metals		I -	14 000 0 400F-18-0 000F 19/00 (40)			
Aluminum Antimony	0.206	0.0031 <0.0001	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾		
Arsenic	0.00334	0.00225	0.005	0.005		
Barium	QA/QC	0.0353	5			
Beryllium Bismuth	<0.001 <0.001	<0.0005 <0.0005	0.0053			
Boron	0.063	0.082	1.2			
Cadmium	<0.000034	0.000019	10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 (7)		
Calcium Chromium	20.5 0.0015	19.5 <0.0005				
Cobalt	0.00039	<0.0001	0.11			
Copper	0.00257 0.351	<0.0001	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾		
Iron Lead	<0.0001	<0.03 <0.00005	0.35 0.003 to e ^{(1.273°In([Hardness (Dissolved)])-1.460})/1000 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾		
Lithium	<0.01	<0.005		0.00110 0.007		
Magnesium	6.87	8.69	(7)			
Manganese Mercury	0.0241	0.0201	(0.01102*[Hardness (Dissolved)])+0.54 (7) 0.0001	0.000026		
Molybdenum	QA/QC	0.00596	2	0.073		
Nickel	0.0067	< 0.0005	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾		
Potassium Selenium	4.73 0.00425	5.97 <0.0001	0.002	0.001		
Silicon	5.41	5.08				
Silver Sodium	0.000048	<0.00001 17.9	0.0001 to 0.003 ⁽⁷⁾	0.0001		
Strontium	0.211	0.322				
Thallium	<0.0002	<0.0001	0.0003	0.0008		
Tin Titanium	<0.0002 <0.01	<0.0001 <0.01				
Uranium	0.000347	0.000379				
Vanadium	0.0227	0.0025	0.006	0.02		
Zinc Total Metals	0.0025	<0.001	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 (7)	0.03		
Aluminum	84.9			0.005 to 0.1 ⁽¹¹⁾		
Antimony Arsenic	<0.001 0.0198		0.005	0.005		
Barium	0.321		0.005 5	0.005		
Beryllium	<0.005		0.0053			
Bismuth Boron	<0.005 0.12		1.2			
Cadmium	0.00058		10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾		
Calcium	104					
Chromium Cobalt	0.512 0.117		0.11			
Copper	0.444		(0.094*([Hardness (Dissolved)])+2)/1000 (7)	0.002 to 0.004 ⁽⁷⁾		
Iron	112		1	0.3		
Lead Lithium	0.0142 <0.05		0.003 to e ^{(1.273*ln([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾		
Magnesium	184					
Manganese Marguny	2.59		(0.01102*[Hardness (Dissolved)])+0.54 (7)	0.00000		
Mercury Molybdenum	0.000025 0.0371		0.0001	0.000026 0.073		
Nickel	1.24		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾		
Potassium	11.8					
Selenium Silicon	0.0041 101		0.002	0.001		
Silver	0.00684		0.0001 to 0.003 ⁽⁷⁾	0.0001		
Sodium	23.3					
Strontium Thallium	0.471 <0.001		0.0003	0.0008		
Tin	<0.001					
Titanium	5.23					
Uranium Vanadium	0.00161 0.332		0.006			
Zinc	0.254	İ	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03		
200						
Organics Carbon Organic (Total)	1.39	<0.5				

M:\1\01\00329\08\A\Report\1- Hydrogeology\Appendices\Appendix B\B1\[Table B1.1 to B1.16.xls]RES08-6B

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME : AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD NDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS.

7. HARDNESS (as CaCO3) DEPENDENT

8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT

11. pH DEPENDENT

[0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-7A

Data Samplad	20 San 09	1-Oct-09		Print Mar/23/10 10:53:
Date Sampled Time Sampled	29-Sep-08	5:12 PM	BCWQG ⁽²⁾	CCME ⁽³⁾
In Situ Parameters Conductivity (uS/cm)	1	398		
Oxygen Dissolved		0.14		
Oxygen Dissolved % pH		1.1 7.79	6.5 to 9	6.5 to 9
Redox Potential (mV)		-55 649		
Specific Conductivity (uS/cm) Temperature (°C)		4.77		
Physical Tests	-1	4.4		
Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3)	<1 183	4.4 183		
Carbonate Alkalinity (as CaCO3)	9.7 <1	<2 <2		
Hydroxide Alkalinity (as CaCO3) Total Alkalinity (as CaCO3)	193	183		
Color (TCU)	<5 601	<5 637		
Conductivity (uS/cm) Hardness (as CaCO3)	256	262		
pH Total Dissolved Solids	8.36 351	8.07 409	6.5 to 9	6.5 to 9
Total Suspended Solids	<3	8.2		
Turbidity (NTU)	0.73	10.6		
Dissolved Anions Bromide	<0.05	<0.05		
Chloride	14.6	16.4	600	
Fluoride Sulphate	0.348 113	0.524 137	0.2 to 0.3 ⁽⁷⁾ 100	
Nutrients		-		(0.0)
Ammonia (as N) Nitrate (as N)	0.0357 0.0086	0.0241	0.681 to 28.3 ^(8,9) 200	0.0168 to 185 ^(8,9) 13
Nitrite (as N)	0.0022	<0.001	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total) Nitrogen (Total Kjeldahl)	<0.05 <0.050	<0.05 <0.05		
Phosphate (Total; as P)	0.0049	0.0065		
Phosphorus (Dissolved)	<0.3 <0.3	<0.3		
Phosphorus (Total) Dissolved Metals	\U. J			
Aluminum	0.0464	<0.001	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	<0.0001 0.00153	<0.0001 0.00309	0.005	0.005
Barium	QA/QC	0.0185	5	
Beryllium Bismuth	<0.0005 <0.0005	<0.0005 <0.0005	0.0053	
Boron	0.073	0.064	1.2	
Cadmium Calcium	<0.000017 35.8	<0.00001 49.9	10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Chromium	<0.0005	<0.001		
Cobalt	0.00013	0.00056	0.11	
Copper Iron	<0.00010 0.08	<0.0001 0.088	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 0.35	0.002 to 0.004 ⁽⁷⁾ 0.3
Lead	0.000068	<0.00005	0.003 to e ^{(1.273*In([Hardness (Dissolved)]]-1.460})1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium Magnesium	0.0122 40.5	0.0215 33.3		
Manganese	0.0459	0.0615	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury Molybdenum	<0.00001 QA/QC	<0.00001 0.00226	0.0001	0.000026 0.073
Nickel	0.00092	0.000220	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Potassium	4.79	1.8		
Selenium Silicon	0.00011 4.25	0.00038 4.25	0.002	0.001
Silver	<0.00001	<0.00001	0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium Strontium	27.4 0.476	30.3 0.725		
Thallium	<0.0001	<0.0001	0.0003	0.0008
Tin Titanium	<0.0001 <0.01	<0.0001 <0.01		
Uranium	0.00121	0.00239		
Vanadium Zinc	0.0012	<0.001 0.0012	0.006	0.03
Zinc Fotal Metals	0.011	0.0012	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Aluminum	0.0235			0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	<0.0001 0.00149	L	0.005	0.005
Barium	0.052		5	
Beryllium Bismuth	<0.0005 <0.0005		0.0053	
Boron	0.07		1.2 (0.951/Jac/(Hardenee (Dispelved)))) 2.2) (7)	(0.00*//.oz/file-de (%)
Cadmium Calcium	<0.000017 35.6		10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Chromium	<0.0005			
Cobalt Copper	0.0001 <0.0001		0.11 (0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron	<0.03		1	0.3
Lead	0.000071		0.003 to e ^{(1.273*In[[Hardness (Dissolved)])-1.460})1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium Magnesium	0.0114 38.8			
Manganese	0.0425		(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury Molybdenum	<0.00001 0.00327		0.0001	0.000026 0.073
Nickel	0.00071		0.025 to 0.150 ⁽⁷⁾	0.073 0.025 to 0.15 ⁽⁷⁾
Potassium	4.74			
Selenium Silicon	<0.0001 4.17		0.002	0.001
Silver	<0.00001		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium Strontium	26.7 0.477		<u></u>	
Thallium	<0.0001		0.0003	0.0008
	<0.0001			
Tin Titanium	~0.01			
Tin Titanium Uranium	<0.01 0.00122			
Titanium			0.006 (33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03

M:\1\01\00329\08\A\Report\1- Hydrogeology\Appendices\Appendix B\B1\[Table B1.1 to B1.16.xls]RES08-7A

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED.

2. BCWGG - BCWGG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. <u>CCME -</u> CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006).

3. CCME - COME - AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006).
4. BOLD
INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS.
5. BOLD
INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH LIMITS.
6. BOLD
INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS.
7. HARDNESS (as CaCO3) DEPENDENT
8. pH (IN SITU) DEPENDENT
9. TEMPERATURE (IN SITU) DEPENDENT
9. CHI/OPENDENT
9. CH

10. CHLORIDE (DISSOLVED) DEPENDENT

11. pH DEPENDENT

12. QA/QC INDICATES THE VALUE EXCEEDED QUALITY ASSURANCE AND QUALITY CONTROL OBJECTIVES.

	0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
1	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-7B

			TION RESU8-7B	Print Mar/23/10 10:53
Date Sampled Fime Sampled	29-Sep-08	1-Oct-09 5:17 PM	BCWQG ⁽²⁾	CCME ⁽³⁾
n Situ Parameters				
Conductivity (uS/cm) Oxygen Dissolved		380 0.68		
Oxygen Dissolved %		5.1		
pH		7.88	6.5 to 9	6.5 to 9
Redox Potential (mV) Specific Conductivity (uS/cm)		-18.3 628		
Temperature (°C)		4.31		
Physical Tests	A	2.0		
Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3)	<1 191	3.8 189		
Carbonate Alkalinity (as CaCO3)	<1	<2		
Hydroxide Alkalinity (as CaCO3)	<1	<2		
Total Alkalinity (as CaCO3) Color (TCU)	191 <5	189 <5		
Conductivity (uS/cm)	612	610		
Hardness (as CaCO3) pH	266 8.23	253 8.13	<u> </u>	0.5.45.0
Total Dissolved Solids	374	377	6.5 to 9	6.5 to 9
Total Suspended Solids	<3	2070		
Turbidity (NTU)	0.37	3620		
Dissolved Anions Bromide	<0.05	<0.05		
Chloride	15.6	14.7	600	
Fluoride	0.513	0.451	0.2 to 0.3 ⁽⁷⁾	
Sulphate Nutrients	120	120	100	
Ammonia (as N)	0.0269	0.0206	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	< 0.005	< 0.005	200	13
Nitrite (as N) Nitrogen (Total)	<0.001 <0.05	<0.001 0.073	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total Kjeldahl)	<0.050	0.073	<u> </u>	
Phosphate (Total; as P)	0.0058	1.82		
Phosphorus (Dissolved) Phosphorus (Total)	<0.3 <0.3	<0.3		
Dissolved Metals				
Aluminum	0.0267	0.0013	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2))} (11)	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	0.00014 0.00137	<0.0001 0.00135		
Arsenic Barium	QA/QC	0.00135	0.005	0.005
Beryllium	<0.0005	<0.0005	0.0053	
Bismuth	<0.0005	<0.0005 0.07	10	
Boron Cadmium	0.064	<0.00001	1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷
Calcium	44.9	43.9	10 /1000	10 /1000
Chromium	< 0.0005	< 0.001		
Cobalt Copper	0.00041	<0.0001 0.00014	0.11 (0.004*/[Herdeces (Disselved)])+2)/(1000 ⁽⁷⁾	$0.002 \text{ to } 0.004^{(7)}$
Iron	0.101	<0.03	(0.094*([Hardness (Dissolved)])+2)/1000 ^(/) 0.35	0.002 to 0.004 ^(/) 0.3
Lead	<0.00005	<0.00005	0.003 to e ^{(1.273*ln[[Hardness (Dissolved)]]-1.460)} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium	0.0225 37.3	0.0173 34.7		
Magnesium Manganese	0.0577	0.0514	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	<0.00001	<0.00001	0.0001	0.000026
Molybdenum	QA/QC	0.00226	2	0.073
Nickel Potassium	0.00075	0.00107 3.03	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	<0.0001	0.00043	0.002	0.001
Silicon	4.23	4.37		
Silver Sodium	<0.00001 28.7	<0.00001 29	0.0001 to 0.003 ⁽⁷⁾	0.0001
Strontium	0.545	0.664		
Thallium	<0.0001	<0.0001	0.0003	0.0008
Tin Titanium	<0.0001 <0.01	<0.0001 <0.01		
Uranium	0.00295	0.00179		
Vanadium	<0.001	<0.001	0.006	
Zinc	0.0027	0.0023	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Fotal Metals	0.0027	0.0023		
Aluminum	0.006			0.005 to 0.1 ⁽¹¹⁾
Antimony	0.00013			
Arsenic Barium	0.00125		0.005	0.005
Beryllium	<0.0005		0.0053	
Bismuth	< 0.0005			
Boron Cadmium	0.064 <0.000017		1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 (
Calcium	44.3		10 10 71000	10 71000 1
Chromium	<0.0005			
Copper	0.00039		0.11 (0.004*/[Herdeces (Disselved)])+2)/(1000 ⁽⁷⁾	0.000 + 0.004 (7)
Copper Iron	<0.0001		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 1	0.002 to 0.004 ⁽⁷⁾ 0.3
Lead	<0.00005		0.003 to $e^{(1.273*ln([Hardness (Dissolved)])-1.460)}/1000^{(7)}$	0.001 to 0.007 ⁽⁷⁾
Lithium	0.0227			
Magnesium Manganese	37.2 0.0565		$(0.01102*[Hardness (Disselved)]) + 0.54^{(7)}$	l
Mercury	<0.00001		(0.01102*[Hardness (Dissolved)])+0.54 ^(/) 0.0001	0.000026
Molybdenum	0.00207		2	0.073
Nickel Potassium	0.00059		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	<0.0001		0.002	0.001
Silicon	4.15			
Silver	<0.00001		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium Strontium	28.4 0.542			
Thallium	<0.0001	L	0.0003	0.0008
Tin	<0.0001			-
Titesi	< 0.01			
Titanium Uranium				
Titanium Uranium Vanadium	0.00304 <0.001		0.006	
Uranium Vanadium	0.00304 <0.001		0.006 (33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Uranium	0.00304			0.03

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD 1. NDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD 1. INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH INITS. 6. BOLD 1. INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH INITS. 7. HARDNESS (as CaCO3) DEPENDENT 8. pH (IN SITU) DEPENDENT

9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT

11. pH DEPENDENT 12. QA/QC INDICATES THE VALUE EXCEEDED QUALITY ASSURANCE AND QUALITY CONTROL OBJECTIVES.

[0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
-	REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-8A

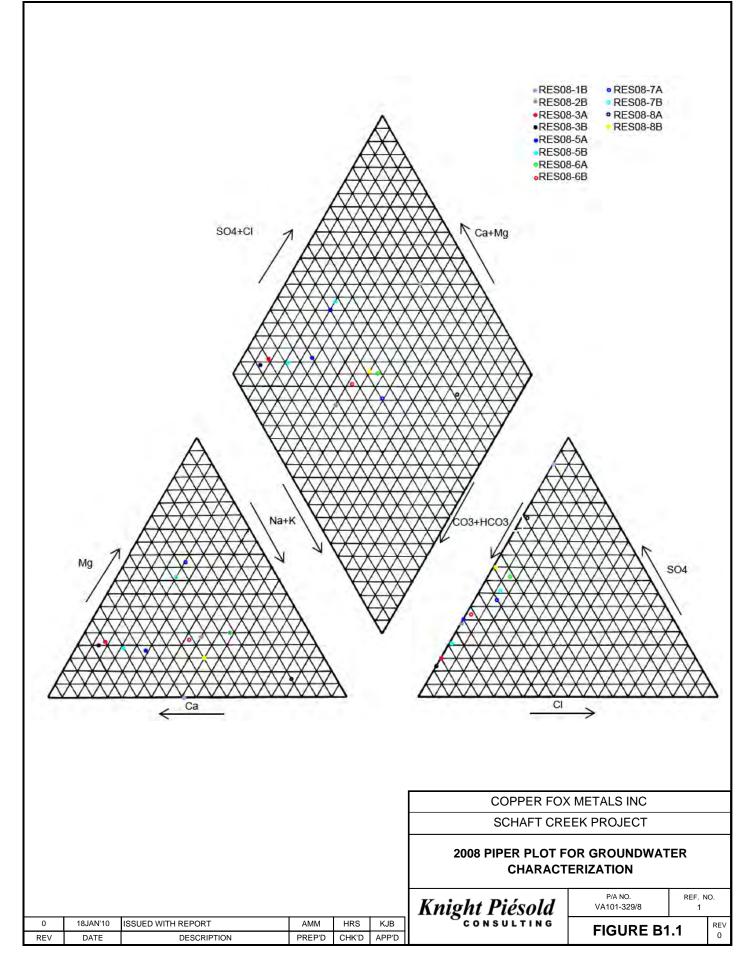
Date Sampled	28-Sep-08	1-Oct-09	BCWQG (2)	Print Mar/23/10 10:53:3 CCME ⁽³⁾
Time Sampled In Situ Parameters		12:47 PM	BCWQG **	CCME
Conductivity (uS/cm)	731	327		
Oxygen Dissolved	40.9	0.14		
Oxygen Dissolved % pH	8.95	8.15	6.5 to 9	6.5 to 9
Redox Potential (mV)	124	-59.4		
Specific Conductivity (uS/cm) Temperature (°C)	4.22	513 6		
Physical Tests				
Acidity to pH 8.3 (as CaCO3) Bicarbonate Alkalinity (as CaCO3)	<1 119	3.1 111		
Carbonate Alkalinity (as CaCO3)	7.1	<2		
Hydroxide Alkalinity (as CaCO3)	<1	<2		
Total Alkalinity (as CaCO3) Color (TCU)	126 14.6	111 <5		
Conductivity (uS/cm)	749	494		
Hardness (as CaCO3)	79.7 8.44	143	0.5 10.0	0.514.0
pH Total Dissolved Solids	8.44 500	8.12 324	6.5 to 9	6.5 to 9
Total Suspended Solids	9880	557		
Turbidity (NTU)	>4000	235		
Dissolved Anions Bromide	<0.05	<0.05		
Chloride	4.22	1.29	600	
Fluoride	1.24	1.01	0.2 to 0.3 ⁽⁷⁾	
Sulphate Nutrients	232	138	100	
Ammonia (as N)	0.0336	0.0075	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)
Nitrate (as N)	0.436	<0.005	200	13
Nitrite (as N) Nitrogen (Total)	0.008	<0.001 0.073	0.06 to 0.6 ⁽¹⁰⁾	0.06
Nitrogen (Total Kjeldahl)	0.84	0.073	<u> </u>	
Phosphate (Total; as P)	1.41	0.11		
Phosphorus (Dissolved) Phosphorus (Total)	<0.3	<0.3	<u> </u>	
Dissolved Metals		1		
Aluminum	1.5	<0.001	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2)) (11)}	0.005 to 0.1 ⁽¹¹⁾
Antimony Arsenic	<0.001 0.0049	<0.0001 0.00142	0.005	0.005
Barium	QA/QC	0.00142	0.005 5	0.005
Beryllium	<0.005	< 0.0005	0.0053	
Bismuth Boron	<0.005	<0.0005 0.101	1.2	
Cadmium	<0.00017	<0.00015	1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2)} 1000 ⁽⁷⁾
Calcium	21.7	41.3	10 /1000	10 /1000
Chromium	< 0.005	< 0.0005		
Cobalt Copper	<0.001 0.0523	<0.0001 0.00013	0.11 (0.004*/[Hordpace (Disect/red)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾
Iron	0.745	< 0.03	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 0.35	0.3
Lead	0.00113	<0.00005	0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium Magnesium	<0.05 6.18	0.0089 9.73		
Magnesium Manganese	0.0288	0.0393	(0.01102*[Hardness (Dissolved)])+0.54 (7)	
Mercury	<0.00001	<0.00001	0.0001	0.000026
Molybdenum	QA/QC	0.0359	2	0.073
Nickel Potassium	<0.005 1.76	0.00156 0.958	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	<0.001	0.0001	0.002	0.001
Silicon	9.61	4.4	(7)	0.0001
Silver Sodium	0.0004 129	<0.00001 47.1	0.0001 to 0.003 ⁽⁷⁾	0.0001
Strontium	1.1	3.01		
Thallium	<0.001	< 0.0001	0.0003	0.0008
Tin Titanium	<0.001 0.024	0.00078 <0.01		
Uranium	0.0215	0.0225		
Vanadium	<0.01	<0.001	0.006	0.00
Zinc Total Metals	0.012	<0.001	(33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03
Aluminum	68.5			0.005 to 0.1 ⁽¹¹⁾
Antimony	<0.001			
Arsenic Barium	0.015 0.44		0.005	0.005
Beryllium	0.44		5 0.0053	
Bismuth	<0.005			
Boron	0.2 0.00112	<u> </u>	1.2 10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2})1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾
Cadmium Calcium	0.00112 80.7		10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	1000 (7)
Chromium	0.0218	1		
Cobalt	0.0116		0.11	(7)
Copper Iron	0.0523 38		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾ 0.3
Lead	0.112		0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾
Lithium	0.12			
Magnesium Manganese	36.2 1.02		$(0.01102^{*[\text{Hardness}}, (\text{Dissalued})) + 0.54^{(7)})$	
Mercury	0.000048		(0.01102*[Hardness (Dissolved)])+0.54 ⁽⁷⁾ 0.0001	0.000026
Molybdenum	0.125		2	0.073
Nickel Potassium	0.037 7.97	-	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾
Selenium	0.0058		0.002	0.001
Silicon	159			
Silver	0.0194		0.0001 to 0.003 ⁽⁷⁾	0.0001
Sodium Strontium	128 4.22		<u> </u>	
Thallium	<0.001		0.0003	0.0008
Tin Titopium	0.0013			
Titanium	0.341	ł	<u> </u>	
Uranium	0.0618			
	0.0618 0.03		0.006	
Uranium			0.006 (33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03

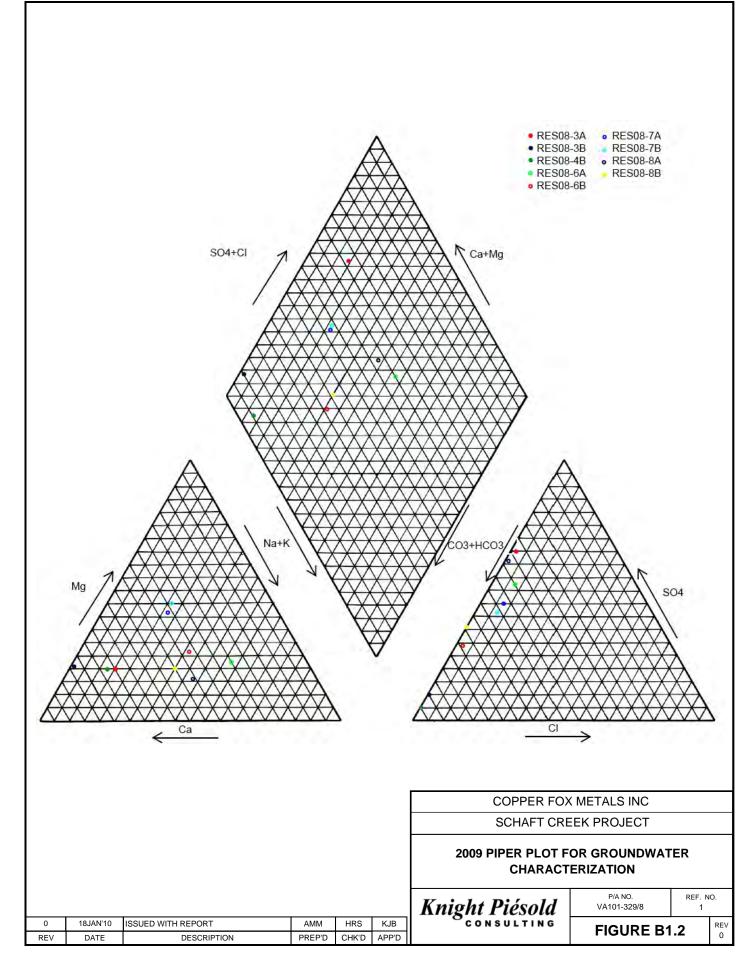
NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH LIMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 7. HARDNESS (as CaC03) EPFENDENT 8. pH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT 11. pH DEPENDENT

0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF GROUNDWATER DATA AND GUIDELINES EXCEEDANCES SAMPLE LOCATION RES08-8B


-	SAIVI			Print Mar/23/10 10:5		
Date Sampled Time Sampled	28-Sep-08	1-Oct-09 10:55 AM	BCWQG ⁽²⁾	CCME ⁽³⁾		
In Situ Parameters Conductivity (uS/cm)	548	286				
Oxygen Dissolved	340	1.42				
Oxygen Dissolved %	29.6	11				
pH Redox Potential (mV)	7.12 52.6	7.18 -100	6.5 to 9	6.5 to 9		
Specific Conductivity (uS/cm)		465				
Temperature (°C) Physical Tests	4.49	4.76				
Acidity to pH 8.3 (as CaCO3)	1.4	7.1				
Bicarbonate Alkalinity (as CaCO3) Carbonate Alkalinity (as CaCO3)	154 <1	165 <2				
Hydroxide Alkalinity (as CaCO3)	<1	<2				
Total Alkalinity (as CaCO3)	154	165				
Color (TCU) Conductivity (uS/cm)	15.5 535	<5 445				
Hardness (as CaCO3)	151	151				
pH Total Dissolved Solids	8.1 363	7.81 284	6.5 to 9	6.5 to 9		
Total Suspended Solids	1180	3.7				
Turbidity (NTU)	1080	5.32				
Dissolved Anions Bromide	<0.05	<0.05				
Chloride	1.64	0.65	600			
Fluoride Sulphate	0.635 123	0.68 72	0.2 to 0.3 ⁽⁷⁾			
lutrients	125	12	100			
Ammonia (as N)	<0.005	< 0.005	0.681 to 28.3 ^(8,9)	0.0168 to 185 ^(8,9)		
Nitrate (as N) Nitrite (as N)	<0.005 <0.001	<0.005 <0.001	200 0.06 to 0.6 ⁽¹⁰⁾	13 0.06		
Nitrogen (Total)	<0.001	0.05		0.00		
Nitrogen (Total Kjeldahl)	1.27	0.083				
Phosphate (Total; as P) Phosphorus (Dissolved)	0.69 <0.3	0.0503 <0.3				
Phosphorus (Total)	1.12					
Dissolved Metals	0.00	0.0125	0.1 to e ^{(1.209-2.426*[pH]+0.286*[pH](2))} (11)	0.005 : 0 : (11)		
Aluminum Antimony	0.28 <0.0005	0.0125 <0.0001	U.1 to et al. Britishow Britely (1)	0.005 to 0.1 ⁽¹¹⁾		
Arsenic	0.00091	0.00315	0.005	0.005		
Barium Beryllium	QA/QC <0.0025	0.0584 <0.0005	5			
Bismuth	<0.0025	<0.0005	0.0053			
Boron	0.078	0.097	1.2	(0.001/1-c/(1-bods.com (Discolard)))), 0.0)		
Cadmium Calcium	0.000092 44	<0.00005 42.3	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2)} /1000 ⁽⁷		
Chromium	<0.0025	<0.001				
Cobalt	0.00071	0.00057	0.11 (7)	(7)		
Copper Iron	0.12	0.00011 0.79	(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾ 0.35	0.002 to 0.004 ^(/) 0.3		
Lead	<0.00025	<0.00005	0.003 to e ^{(1.273*ln([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.001 to 0.007 ⁽⁷⁾		
Lithium	<0.025	<0.005 11.1				
Magnesium Manganese	10.1 0.203	0.448	(0.01102*[Hardness (Dissolved)])+0.54 (7)			
Mercury	<0.00001	<0.00001	0.0001	0.000026		
Molybdenum	QA/QC	0.0144	2	0.073		
Nickel Potassium	0.0054 2.8	<0.0005 1.74	0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾		
Selenium	<0.0005	0.00036	0.002	0.001		
Silicon Silver	4.64 <0.00005	5.64 <0.00001	0.0001 (1.0.000 (7)	0.0001		
Sodium	56.2	35.9	0.0001 to 0.003 ⁽⁷⁾	0.0001		
Strontium	1.01	1.73				
Thallium Tin	<0.0005 <0.0005	<0.0001 <0.0001	0.0003	0.0008		
Titanium	0.012	<0.01				
Uranium Vanadium	0.0309 <0.005	0.0114 0.0012	0.000			
Zinc	<0.005	<0.0012	0.006 (33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03		
otal Metals	1					
Aluminum	33.7 0.00057			0.005 to 0.1 ⁽¹¹⁾		
Antimony Arsenic	0.00057		0.005	0.005		
Barium	0.967		5			
Beryllium Bismuth	<0.0025 <0.0025		0.0053			
Boron	0.081		1.2			
Cadmium	0.000569		10 ^{(0.86*(log([Hardness (Dissolved)]])-3.2)} /1000 ⁽⁷⁾	10 ^{(0.86*(log([Hardness (Dissolved)]))-3.2)} /1000 ⁽⁷		
Calcium Chromium	59 0.0598					
Cobalt	0.018		0.11			
Copper	0.12		(0.094*([Hardness (Dissolved)])+2)/1000 ⁽⁷⁾	0.002 to 0.004 ⁽⁷⁾		
Iron Lead	33.6 0.0172		1 0.003 to e ^{(1.273*In([Hardness (Dissolved)])-1.460)} /1000 ⁽⁷⁾	0.3 0.001 to 0.007 ⁽⁷⁾		
Lithium	0.028		//////	0.001 10 0.001		
Magnesium Managapasa	25.6		(0.0440097111(7)			
Manganese Mercury	0.998		(0.01102*[Hardness (Dissolved)])+0.54 (7) 0.0001	0.000026		
Molybdenum	0.152		2	0.073		
Nickel Potassium	0.0645		0.025 to 0.150 ⁽⁷⁾	0.025 to 0.15 ⁽⁷⁾		
Potassium Selenium	7.84 0.00167		0.002	0.001		
Silicon	52					
Silver Sodium	0.00299		0.0001 to 0.003 ⁽⁷⁾	0.0001		
Sodium	56.6 1.14					
Strontium	< 0.0005	1	0.0003	0.0008		
Thallium						
Thallium Tin	0.00114					
Thallium Tin Titanium Uranium	0.00114 0.727 0.0383					
Thallium Tin Titanium	0.00114 0.727		0.006 (33+0.75*([Hardness (Dissolved)]-90))/1000 to 0.033 ⁽⁷⁾	0.03		


NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BCWQG - BCWQG: AQUATIC LIFE: FRESH - BRITISH COLUMBIA WATER QUALITY GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (AUGUST 2006). 3. CCME - CCME: AQUATIC LIFE: FRESH - CANADIAN ENVIRONMENTAL GUIDELINES FOR AQUATIC LIFE IN FRESH WATER (DECEMBER 2006). 4. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH LIMITS. 5. BOLD INDICATES THE VALUE EXCEEDS THE CCME: AQUATIC LIFE: FRESH IMITS. 6. BOLD INDICATES THE VALUE EXCEEDS THE BCWQG: AQUATIC LIFE: FRESH IMITS. 7. HARDNESS (as CaCO3) DEPENDENT 8. PH (IN SITU) DEPENDENT 9. TEMPERATURE (IN SITU) DEPENDENT

9. TEMPERATURE (IN SITU) DEPENDENT 10. CHLORIDE (DISSOLVED) DEPENDENT

11. PH DEPENDENT 12. QA/QC INDICATES THE VALUE EXCEEDED QUALITY ASSURANCE AND QUALITY CONTROL OBJECTIVES.

0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK D	APP'D

APPENDIX B2

SUMMARY OF QUALITY ASSURANCE AND QUALITY CONTROL DATA

(Pages B2-1 to B2-3)

VA101-329/8-1 Rev 0 April 1 2010

TABLE B2.1

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF QA/QC BLANK SAMPLE ANALYSIS FOR GROUNDWATER QUALITY

Sample ID Date Sampled Physical Tests Acidity to pH 8.3 (as CaCO3) Hydroxide Alkalinity (as CaCO3)	FIELD BLANK 27-Sep-08 <	27-Sep-08	30-Sep-09	TRAVEL BLANK 30-Sep-09
Acidity to pH 8.3 (as CaCO3) Hydroxide Alkalinity (as CaCO3)	<1			
Hydroxide Alkalinity (as CaCO3)	< 1		.4	- 4
, , ,	<1	<1 <1	<1 <2	<1 <2
Bicarbonate Alkalinity (as CaCO3)	1.6	1.2	<2	<2
Carbonate Alkalinity (as CaCO3)	<1	<1	<2	<2
Total Alkalinity (as CaCO3)	1.6	1.2	<2	<2
Conductivity (uS/cm)	<2	<2	<2	<2
Hardness (as CaCO3) pH	<0.5 5.41	<0.5 5.55	<0.5 5.56	<0.5 5.58
Total Dissolved Solids	<10	<10	<10	<10
Total Suspended Solids	<3	<3	<3	<3
Turbidity (NTU)	<0.1	<0.1	<0.1	<0.1
Dissolved Anions				
Bromide (Dissolved)	<0.05	<0.05	<0.05	<0.05
Chloride (Dissolved) Fluoride (Dissolved)	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02	<0.5 <0.02
Sulphate (Dissolved)	<0.5	<0.5	<0.5	<0.5
Nutrients				
Ammonia (as N)	< 0.005	<0.005	<0.005	< 0.005
Nitrate (as N)	<0.005	<0.005	<0.005	<0.005
Nitrite (as N)	< 0.001	<0.001	<0.001	< 0.001
Nitrogen (Total) Nitrogen (Total Kjeldahl)	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Phosphate (Total; as P)	<0.002	<0.002	<0.002	<0.002
Phosphorus (Dissolved)	40.002	40.002	<0.3	40.00L
Phosphorus (Total)	<0.3	<0.3		<0.3
Dissolved Metals				
Aluminum (Dissolved)	-	-	<0.001	-
Antimony (Dissolved) Arsenic (Dissolved)	-	-	<0.0001 <0.0001	-
Barium (Dissolved)		-	<0.0001	-
Beryllium (Dissolved)	-	-	<0.0005	-
Bismuth (Dissolved)	-	-	<0.0005	-
Boron (Dissolved)	-	-	<0.01	-
Cadmium (Dissolved)	-	-	<0.00001	-
Calcium (Dissolved) Chromium (Dissolved)		-	<0.02 <0.0005	-
Cobalt (Dissolved)	-	-	<0.0001	-
Copper (Dissolved)	-	-	<0.0001	-
Iron (Dissolved)	-	-	<0.03	-
Lead (Dissolved)	-	-	<0.00005	-
Lithium (Dissolved)	-	-	< 0.005	-
Magnesium (Dissolved) Manganese (Dissolved)	-	-	<0.005 <0.00005	-
Mercury (Dissolved)	-	-	<0.00003	-
Molybdenum (Dissolved)	-	-	< 0.00005	-
Nickel (Dissolved)	-	-	<0.0005	-
Potassium (Dissolved)	-	-	<0.05	-
Selenium (Dissolved)		-	<0.0001	-
Silicon (Dissolved) Silver (Dissolved)	-	-	<0.05 <0.00001	-
Sodium (Dissolved)	-	-	<2	-
Strontium (Dissolved)	-	-	<0.0001	-
Thallium (Dissolved)	-	-	<0.0001	-
Tin (Dissolved)	-	-	<0.0001	-
Titanium (Dissolved)	-	-	<0.01	-
Uranium (Dissolved) Vanadium (Dissolved)	-	-	<0.0001 <0.001	-
Zinc (Dissolved)	-	-	<0.001	-
Total Metals				
Aluminum (Total)	<0.001	<0.001	-	<0.001
Antimony (Total)	<0.0001	<0.0001	-	<0.0001
Arsenic (Total)	<0.0001 <0.00005	<0.0001	-	<0.0001
Barium (Total) Beryllium (Total)	<0.00005	<0.00005 <0.0005	-	<0.00005 <0.0005
Bismuth (Total)	<0.0005	<0.0005	-	<0.0005
Boron (Total)	<0.01	<0.01	-	<0.01
Cadmium (Total)	<0.000017	<0.000017	-	<0.00001
Calcium (Total)	<0.02	< 0.02	-	<0.02
Chromium (Total) Cobalt (Total)	<0.0005 <0.0001	<0.0005 <0.0001	-	<0.0005 <0.0001
Copper (Total)	<0.0001	<0.0001	-	<0.0001
Iron (Total)	<0.001	<0.001	-	<0.03
Lead (Total)	<0.00005	<0.00005	-	<0.00005
Lithium (Total)	< 0.005	< 0.005	-	<0.005
Magnesium (Total)	< 0.005	<0.005	-	< 0.005
Manganese (Total) Mercury (Total)	<0.00005 <0.00001	<0.00005 <0.00001	-	<0.00005 <0.00001
Molybdenum (Total)	<0.00001	<0.00001	-	<0.00001
Nickel (Total)	<0.0005	<0.0005	-	<0.0005
Potassium (Total)	<0.05	<0.05	-	<0.05
Selenium (Total)	<0.0001	<0.0001	-	<0.0001
Silicon (Total)	< 0.05	< 0.05	-	< 0.05
Silver (Total)	< 0.00001	<0.00001	-	<0.00001
Sodium (Total) Strontium (Total)	<2 <0.0001	<2 <0.0001	-	<2 <0.0001
Thallium (Total)	<0.0001	<0.0001	-	<0.0001
Tin (Total)	<0.0001	<0.0001	-	<0.0001
Titanium (Total)	<0.01	<0.01	-	<0.01
Uranium (Total)	<0.00001	<0.00001	-	<0.00001
Vonedium (Tet-I)	<0.001	<0.001	-	<0.001
Vanadium (Total)				
Zinc (Total)	<0.001	<0.001	-	<0.001
· · · · ·	<0.001	<0.001	- <0.5	<0.001

M:\1\01\00329\08\A\Report\1- Hydrogeology\Appendices\Appendix B\B2\[Table B2.1.xls]Blank Analysis

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BOLD INDICATES THE RESULT EXCEEDS THE MDL FOR THAT ANALYTE. 3. MDL EXCEEDANCE CALCULATION DOES NOT INCLUDE pH, pH VALUES WILL ALWAYS BE ABOVE THE MDL. 4. *-* SAMPLE NOT ANALYZED FOR.

0	12DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

TABLE B2.2

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF QA/QC DUPLICATE SAMPLE ANALYSIS FOR GROUNDWATER QUALITY

ite Date Sampled	MDL 27-Sep-08	RES08-6A 27-Sep-08	Duplicate 27-Sep-08	RPD (%)	MDL 2-Oct-09	RES08-3B 2-Oct-09	Duplicate 2-Oct-09	RPD (%)
hysical Tests								
Acidity to pH 8.3 (as CaCO3)	1	<1	<1		1	3	2.6	
Total Alkalinity (as CaCO3)	1	112	108	4%	2	100	103	3%
Bicarbonate Alkalinity (as CaCO3)	1	107	103	4%	2	100	103	3%
Carbonate Alkalinity (as CaCO3)	1	4.6	5.3	14%	2	<2	<2	
Hydroxide Alkalinity (as CaCO3) Color (TCU)	5	<1 <5	<1 <5		2	<2 <5	<2 <5	
Conductivity (uS/cm)	2	427	421	1%	2	211	208	1%
Hardness (as CaCO3)	0.5	97	92	5%	0.5	103	104	1%
pH	0.01	8.3	8.23	1%	0.3	8.15	8.16	0%
Total Dissolved Solids	10	277	266	4%	10	117	113	3%
Total Suspended Solids	3	452	418	8%	3	6.2	6.2	570
Turbidity (NTU)	0.1	430	418	4%	0.1	5.44	4.62	16%
issolved Anions	0.1	430	440	4 70	0.1	5.44	4.02	10%
Bromide (Dissolved)	0.05	<0.05	<0.05		0.05	<0.05	< 0.05	
Chloride (Dissolved)	0.5	9.87	9.69	2%	0.03	<0.5	<0.05	
Fluoride (Dissolved)	0.02	0.566	0.515	9%	0.02	<0.02	<0.02	
Sulphate (Dissolved)	0.5	94.1	93.3	1%	0.5	8.97	8.87	1%
lutrients	0.5	34.1	55.5	1 70	0.5	0.31	0.07	170
Ammonia (as N)	0.005	0.0159	0.0173	1	0.005	< 0.005	<0.005	
Nitrate (as N)	0.005	0.0063	0.0054		0.005	0.0339	0.031	9%
		0.0003	0.0013			<0.001	<0.001	9%
Nitrite (as N)	0.001				0.001			
Nitrogen (Total)	0.05	0.23	0.14		0.05	< 0.05	< 0.05	
Nitrogen (Total Kjeldahl)	0.05	0.223	0.129	50/	0.05	< 0.05	< 0.05	400/
Phosphate (Total; as P)	0.02	0.355	0.339	5%	0.002	0.011	0.0091	19%
Phosphorus (Dissolved)	0.3	<0.3	<0.3		0.3	<0.3	<0.3	
Phosphorus (Total)	0.3	0.4	0.4	L	-	-	-	
issolved Metals	0.000	0.000	0.0005	021	0.001	0.0005	0.0000	
Aluminum (Dissolved)	0.002	0.083	0.0808	3%	0.001	0.0026	0.0026	
Antimony (Dissolved)	0.0002	< 0.001	0.00062		0.0001	< 0.0001	< 0.0001	
Arsenic (Dissolved)	0.0002	0.0022	0.00199		0.0001	0.00047	0.00048	
Barium (Dissolved)	0.0001	0.0413	0.0572	32%	0.00005	0.0621	0.0629	1%
Beryllium (Dissolved)	0.001	< 0.005	< 0.001	ļ	0.0005	< 0.0005	< 0.0005	
Bismuth (Dissolved)	0.001	< 0.005	< 0.001		0.0005	< 0.0005	< 0.0005	
Boron (Dissolved)	0.02	0.11	0.116	5%	0.01	0.01	0.011	
Cadmium (Dissolved)	0.000034	<0.00017	<0.000034		0.00001	<0.00001	<0.00001	
Calcium (Dissolved)	0.04	20.1	18.2	10%	0.02	32.5	32.9	1%
Chromium (Dissolved)	0.001	<0.005	<0.001		0.0005	0.00087	0.00087	
Cobalt (Dissolved)	0.0002	<0.001	<0.0002		0.0001	<0.0001	<0.0001	
Copper (Dissolved)	$0.001/0.0002^4$	0.0024	0.00147		0.0001	0.00023	0.0002	
Iron (Dissolved)	0.03	0.083	0.099		0.03	<0.03	<0.03	
Lead (Dissolved)	0.0001	<0.0005	<0.0001		0.00005	<0.00005	<0.00005	
Lithium (Dissolved)	0.01	<0.05	0.01		0.005	<0.005	<0.005	
Magnesium (Dissolved)	0.01	11.4	11.3	1%	0.005	5.26	5.37	2%
Manganese (Dissolved)	0.0001	0.0182	0.0177	3%	0.00005	0.000209	0.000214	2%
Mercury (Dissolved)	0.00001	<0.00001	<0.00001		0.00001	<0.00001	<0.00001	
Molybdenum (Dissolved)	0.0001	0.0562	0.0899	46%	0.00005	0.00142	0.00146	3%
Nickel (Dissolved)	0.001	0.005	0.0044	13%	0.0005	< 0.0005	< 0.0005	
Potassium (Dissolved)	0.1	5.72	4.64	21%	0.05	0.65	0.645	1%
Selenium (Dissolved)	0.0002	<0.001	0.0003		0.0001	<0.0001	<0.0001	
Silicon (Dissolved)	0.05	4.47	4.49	0%	0.05	2.29	2.29	0%
Silver (Dissolved)	0.00002	<0.0001	< 0.00002		0.00001	<0.00001	< 0.00001	
Sodium (Dissolved)	2	39.8	45.7	14%	2	<2	<2	
Strontium (Dissolved)	0.0002	0.5	0.519	4%	0.0001	0.12	0.122	2%
Thallium (Dissolved)	0.0002	<0.001	< 0.0002		0.0001	<0.0001	<0.0001	
Tin (Dissolved)	0.0002	<0.001	0.00061		0.0001	< 0.0001	< 0.0001	
Titanium (Dissolved)	0.01	<0.01	<0.01		0.01	<0.01	<0.01	
Uranium (Dissolved)	0.00002	0.00311	0.00333	7%	0.00001	0.000163	0.00016	2%
Vanadium (Dissolved)	0.002	<0.01	< 0.002		0.001	< 0.001	<0.001	
Zinc (Dissolved)	0.002	<0.01	0.0034		0.001	<0.001	<0.001	
otal Metals								
Aluminum (Total)	0.002	14.5	12.9	12%	-	-	-	-
Antimony (Total)	0.0002	0.00104	0.00096	8%	-	-	-	-
Arsenic (Total)	0.0002	0.00552	0.00531	4%	-	-	-	-
Barium (Total)	0.0001	0.137	0.131	4%	-	-	-	-
Beryllium (Total)	0.001	<0.001	< 0.001	.,,,	-	-	-	-
Bismuth (Total)	0.001	<0.001	<0.001	1	-	-	-	-
Boron (Total)	0.02	0.124	0.123	1%	-	-	-	-
Cadmium (Total)	0.000034	0.000291	0.000323	10%	-	-	-	-
Calcium (Total)	0.04	32.7	32.5	1%	-	-	-	-
Chromium (Total)	0.004	0.129	0.116	11%	-	-	-	-
Cobalt (Total)	0.0002	0.0166	0.0151	9%	-	-	-	-
Copper (Total)	0.0002	0.0682	0.0644	6%	-	-	-	-
Iron (Total)	0.002	21.1	18.3	14%	-	-	-	-
Lead (Total)	0.0001	0.00439	0.00442	14 %	-	-	-	
Lithium (Total)	0.001	0.021	0.02	170	-	-	-	
Magnesium (Total)	0.01	35.4	34.1	4%	-	-	-	
Magnesium (Total)	0.0001	0.415	0.389	4% 6%	-	-	-	
				070				
Mercury (Total) Molybdenum (Total)	0.00001 0.0001	0.00003	0.000016 0.108	5%	-	-	-	-
Molybdenum (Total)		0.113			-	-	-	-
Nickel (Total)	0.001	0.182	0.168	8%	-	-	-	-
Potassium (Total)	0.1	5.81	5.51	5%	-	-	-	-
Selenium (Total)	0.0002	0.00067	0.00078		-	-	-	-
Silicon (Total)	0.05	36.4	31.7	14%	-	-	-	-
Silver (Total)	0.00002	0.00758	0.00668	13%	-	-	-	-
Sodium (Total)	2	49.4	49.5	0%	-	-	-	-
Strontium (Total)	0.0002	0.602	0.617	2%	-	-	-	-
Thallium (Total)	0.0002	<0.0002	<0.0002		-	-	-	-
Tin (Total)	0.0002	0.00226	0.00197	14%	-	-	-	-
Titanium (Total)	0.01	0.683	0.554	21%	-	-	-	-
Uranium (Total)	0.00002	0.00434	0.00435	0%	-	-	-	-
Vanadium (Total)	0.002	0.0514	0.046	11%	-	-	-	-
· · · ·	0.002	0.0514 0.0843	0.046 0.0773	11% 9%	-	-	-	-

NOTES: 1. UNITS ARE mg/L, UNLESS OTHERWISE STATED. 2. BOLD INDICATES THE RPD (RELATIVE PERCENT DIFFERENCE) EXCEEDS THE 25% DATA QUALITY OBJECTIVE FOR ANALYTICAL VALUES GREATER THAN 5 TIMES THE MDL. 3. *-* SAMPLE NOT ANALYZED FOR.

4. DIFFERENT MDL FOR RES08-06A AND DUPLICATE.

[0	07DEC'09	ISSUED WITH REPORT - VA101-329/8-1	AL	HRS	KJB
[REV	DATE	DESCRIPTION	PREP'D	CHK'D	APP'D

TABLE B2.3

COPPER FOX METALS INC. SCHAFT CREEK PROJECT

SUMMARY OF CATION-ANION BALANCE

Location	Year	Ca ²⁺	Mg ²⁺	K⁺	Na⁺	Sum of	HCO3 ⁻	CO32-	SO42-	CI	OH.	Sum of	% Erro
Location	1601	meq/L	meq/L	meq/L	meq/L	Cations	meq/L	meq/L	meq/L	meq/L	meq/L	Anions	70 EITC
RES08-1A	2008	33.68	0.00	5.19	39.80	78.67	0.00	3.53	4.52	0.00	198.71	206.76	-45%
RE000-IA	2009	29.24	0.00	4.88	43.15	77.28	0.00	0.86	3.37	0.00	39.92	44.15	27%
RES08-1B	2008	19.16	0.01	0.80	15.27	35.24	0.02	2.46	24.15	0.27	14.52	41.42	-8%
RECOO-ID	2009	13.72	0.00	0.59	15.05	29.36	0.02	2.14	11.78	0.71	39.39	54.03	-30%
RES08-2A	2008	37.97	0.01	7.72	31.67	77.37	0.00	4.40	9.93	0.16	194.59	209.08	-46%
RE000-2A	2009	7.58	0.00	1.25	5.35	14.18	0.00	5.60	0.75	0.00	21.22	27.57	-32%
RES08-2B	2008	0.75	0.47	0.05	0.78	2.05	1.46	0.22	0.66	0.01	0.00	2.35	-7%
NECCO 2D	2009	0.87	0.73	0.03	0.30	1.93	0.71	2.07	0.59	0.00	0.00	3.37	-27%
RES08-3A	2008	1.69	0.50	0.02	0.20	2.40	1.88	0.00	0.35	0.00	0.00	2.23	4%
RE000-3A	2009	3.61	1.10	0.03	0.85	5.59	1.82	0.00	3.31	0.12	0.00	5.25	3%
RES08-3B	2008	1.36	0.37	0.02	0.11	1.86	1.52	0.00	0.20	0.00	0.00	1.72	4%
INE 000-3D	2009	1.62	0.43	0.02	0.00	2.07	1.64	0.00	0.19	0.00	0.00	1.83	6%
RES08-4A	2008	9.68	0.00	0.71	9.00	19.40	0.00	4.13	1.74	0.31	37.04	43.23	-38%
RE000-4A	2009	6.74	0.01	0.34	6.79	13.87	0.00	4.13	0.88	0.17	19.17	24.34	-279
RES08-4B	2008	11.78	0.00	0.15	0.86	12.79	0.00	2.21	0.18	0.00	27.22	29.61	-40%
NE000-4D	2009	1.62	0.50	0.04	0.27	2.43	1.52	1.21	0.14	0.00	0.00	2.87	-8%
RES08-5A	2008	1.07	0.33	0.01	0.43	1.84	1.20	0.00	0.52	0.00	0.00	1.72	3%
RES08-5B	2008	1.64	0.48	0.03	0.36	2.51	1.85	0.00	0.44	0.04	0.00	2.33	4%
RES08-6A	2008	1.00	0.94	0.15	1.73	3.82	1.75	0.15	1.96	0.28	0.00	4.14	-4%
RE000-0A	2009	1.05	0.99	0.15	2.09	4.28	1.63	0.00	2.12	0.31	0.00	4.06	3%
RES08-6B	2008	1.02	0.56	0.12	0.76	2.47	1.48	0.15	0.77	0.05	0.00	2.45	0%
INE OOD-OD	2009	0.97	0.71	0.15	0.78	2.62	1.75	0.00	0.74	0.06	0.00	2.55	1%
RES08-7A	2008	1.79	3.33	0.12	1.19	6.43	3.00	0.32	2.35	0.41	0.00	6.09	3%
RE300-7A	2009	2.49	2.74	0.05	1.32	6.59	3.00	0.00	2.85	0.46	0.00	6.31	2%
RES08-7B	2008	2.24	3.07	0.05	1.25	6.61	3.13	0.00	2.50	0.44	0.00	6.07	4%
112000-70	2009	2.19	2.85	0.08	1.26	6.38	3.10	0.00	2.50	0.41	0.00	6.01	3%
RES08-8A	2008	1.08	0.51	0.05	5.61	7.25	1.95	0.24	4.83	0.12	0.00	7.14	1%
NL 300-0A	2009	2.06	0.80	0.02	2.05	4.93	1.82	0.00	2.87	0.04	0.00	4.73	2%
RES08-8B	2008	2.20	0.83	0.07	2.44	5.54	2.52	0.00	2.56	0.05	0.00	5.13	4%
RESUS-8B	2009	2.11	0.91	0.04	1.56	4.63	2.70	0.00	1.50	0.02	0.00	4.22	5%

NOTES: 1. BOLD INDICATE GREATER THAN 10% ERROR. 2. OH' ION USED IN CALCUATION TO CONSIDER pH VALUES.

 0
 21DEC09
 ISSUED WITH REPORT - VA101-00329/8-1
 AL
 HRS
 KJB

 REV
 DATE
 DESCRIPTION
 PREPD
 CHKD
 APPD