Schaft Creek Project Prediction of Metal Leaching and Acid Rock Drainage, Phase 1

prepared for:
Rescan Environmental Services Ltd.
Attn: Mr. Shane Uren
Sixth Floor,
1111 West Hastings Street.
Vancouver, British Columbia V6E 2J3

prepared by:

Kevin A. Morin, Ph.D., P.Geo., L.Hydrogeo.
Nora M. Hutt, A.Sc.T, c.C.T.
Minesite Drainage Assessment Group
A Division of Morwijk Enterprises Ltd.
8035 Redtail Court,
Surrey, British Columbia V3W 0N4

August 10, 2007

P.Geo. and A.Sc.T. Notice

This study is based on detailed technical information interpreted through standard and advanced chemical and geoscientific techniques available at this time. As with all geoscientific investigations, the findings are based on data collected at discrete points in time and location. In portions of this report, it has been necessary to infer information between and beyond the measured data points using established techniques and scientific judgement. In our opinion, this report contains the appropriate level of geoscientific information to reach the conclusions stated herein.

This study has been conducted in accordance with British Columbia provincial legislation as stated in the Engineers and Geoscientists Act and in the Applied Science Technologists and Technicians Act.

Kevin A. Morin, Ph.D., P.Geo.
Registration No. 18,721
Association of Professional
Engineers and Geoscientists

Nora M. Hutt, A.Sc.T., c.C.T. Registration No. 10700
Association of Applied Science
Technologists and Technicians

TABLE OF CONTENTS

P.Geo. and A.Sc.T. Notice i
List of Tables iii
List of Figures iii
Executive Summary V
Report Summary vi

1. INTRODUCTION 1
2. GENERAL INFORMATION AND PREVIOUS ML-ARD-RELATED STUDIES 2
2.1 Location and History 2
2.2 Geology 3
2.3 Past ML-ARD-Related Work 5
2.4 Important ML-ARD Observations from Previous Studies 7
3. SAMPLING AND ANALYSIS 8
3.1 Sample Selection and Collection 8
3.2 Sample Analysis 10
4. RESULTS OF GEOCHEMICAL STATIC TESTS 12
4.1 Acid-Base Accounting 12
4.1.1 Paste pH 12
4.1.2 Sulphur Species and Acid Potentials 12
4.1.3 Neutralization Potentials 16
4.1.4 Net Balances of Acid-Generating and Acid-Neutralizing Capacities 22
4.1.5 Spatial Distribution of Net Balances 23
4.2 Total-Element Analyses 27
5. CONCLUSION AND RECOMMENDATIONS 31
6. REFERENCES 35
APPENDIX A. Notes on the Collection of Phase 1 ML-ARD Samples by MDAG, February 2007 36
APPENDIX B. Compiled Acid-Base Accounting and Total-Element Analyses for Rock at the Schaft Creek Project 42

List of Tables

2-1. Statistical Results of Previous Acid-Base Accounting for Sixteen Samples 5
3-1. Important Rock Units and Their Observed Abundances in 2005 Drill Core 8
3-2. Rock Units and Number of Phase 1 ML-ARD Samples from 2005 Drill Core 9
4-1. Summary of Net-Acid-Generating, Uncertain, and Net-Neutralizing Percentages of Samples from 2005 Drill Core 26

List of Figures

4-1. Paste pH vs. Total Sulphur in the 59 Schaft Creek Rock Samples 13
4-2. Sulphide vs. Total Sulphur in the 59 Schaft Creek Rock Samples 13
4-3. HCl-Leachable Sulphate vs. Total Sulphur in the 59 Schaft Creek Rock Samples 14
4-4. Sulphur Mass Imbalance vs. Total Sulphur in the 59 Schaft Creek Rock Samples 14
4-5. Calculated Pyrite-Bound Sulphide vs. Copper-Bound Sulphide as Chalcopyrite and CuS_{2} in the 59 Schaft Creek Rock Samples 17
4-6. Pyrite-Calculated Acid Potential (PAP) vs. Sulphide-Based Acid Potential (SAP) in the 59 Schaft Creek Rock Samples 17
4-7. Paste pH vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples 18
4-8. Inorganic-Carbon-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples 18
4-9. Calcium-Based Neutralization Potential vs. Inorganic-Carbon-Based Neutralization Potential in the 59 Schaft Creek Rock Samples 20
4-10. Calcium-Magnesium-Based Neutralization Potential vs. Inorganic-Carbon-Based Neutralization Potential in the 59 Schaft Creek Rock Samples 20
4-11. Calcium-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples 21
4-12. Calcium-Magnesium-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples 21
4-13. Worst-Case Adjusted Sulphide-Based Net Potential Ratio vs. Sulphide in the 59 Schaft Creek Rock Samples 24
4-14. Worst-Case Adjusted Sulphide-Based Net Potential Ratio vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples 24
4-15. Best-Case Adjusted Pyrite-Calculated Net Potential Ratio vs. Sulphide in the 59 Schaft Creek Rock Samples 25
4-16. Best-Case Adjusted Pyrite-Calculated Net Potential Ratio vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples 25
4-17. General East-West Vertical Cross-Section through the Schaft Creek Deposit, Showing Worst-Case Adjusted Sulphide-Based Net Potential Ratio . 28
4-18. General North-South Vertical Cross-Section through the Schaft Creek Deposit,
Showing Worst-Case Adjusted Sulphide-Based Net Potential Ratio 29

Executive Summary

This first-phase report predicts metal leaching (ML) and acid rock drainage (ARD) at Copper Fox Metal’s Schaft Creek Project. As specified in the British Columbia Policy, Guidelines, and draft Prediction Manual, ML-ARD predictions are being developed in phases, with each phase focussing on resolving uncertainties identified in earlier phases. It is too early at this stage to reach any major or clear conclusions about ML-ARD potential.

In this first phase of ML-ARD testing, 59 samples of core rejects from the 2005 drilling program were submitted for expanded Sobek (EPA 600) acid-base accounting and for total-element analyses. Some major observations were:

- Previous observations of weathered core reported little evidence of oxidation and reaction.
- Schaft Creek rock contains abundant aluminosilicate minerals, which can provide some neutralization in addition to carbonate minerals.
- Based on the 59 core samples and generic criteria, only $0-2 \%$ of the samples were net acid generating and $5-14 \%$ were currently "uncertain", and thus most samples were net neutralizing. Additional testwork is needed to resolve the ARD status of the uncertain samples, and to examine other portions of the deposit.
- Although up to 2% of samples were net acid generating, none were acidic at the time of analysis, and years to decades may have to pass before they became acidic.
- Compared to general crustal abundances, the 59 samples were frequently elevated in silver, bismuth, copper, molybdenum, and selenium, and occasionally elevated in sulphur, antimony, and tungsten. However, solid-phase levels do not typically reflect leaching rates into water, so additional testwork is needed on metal leaching.

Recommendations were offered to improve the accuracy and to reduce the uncertainty in the current ML-ARD predictions for the Schaft Creek Project.

Report Summary

Whenever mined rock is exposed to air and moisture, the rates of weathering, oxidation, and leaching can accelerate. If sulphide minerals like pyrite are exposed, the oxidation will release acidity, some metals, sulphate, and heat. If the acidity is not neutralized by minerals like calcite or feldspar in the rock, the resulting acidic water is called "acid rock drainage" (ARD) in British Columbia. Whether sulphide minerals are present or not, weathering can still lead to accelerated metal leaching (ML). For example, the simple dissolution of carbonate minerals can release metals like manganese.

The provincial ML-ARD Policy, Guidelines, and draft Prediction Manual contain the recommendations and the expectations of the government for ML-ARD prediction and control. One recommendation is that ML-ARD studies are carried out in phases, with each phase focussing on the uncertainties identified in the previous ones.

This report contains the first phase of ML-ARD studies for the Schaft Creek Project. Previous relevant information was compiled. Also, 59 samples of core rejects, from 11 holes drilled in 2005, were collected from cold storage. This set included two duplicates for QA/QC checks. All 59 samples were analyzed for expanded Sobek (EPA 600) acid-base accounting, and for totalelement contents using ICP-MS after four-acid digestion and using x-ray fluorescence whole rock.

Previous Information

The compilation of existing information relevant to ML-ARD led to the following important observations.

- The Schaft Creek copper-gold-molybdenum deposit is widely acknowledged as a porphyry copper deposit. It contains three mineral zones: the Liard, West Breccia, and Paramount Zones.
- During an examination of existing core, "It has been noted that the core from previous drilling programs, which is stored on site, exhibits a remarkable degree of preservation with limited visible weathering." Thus, the oxidation rate of Schaft Creek rock may be relatively slow.
- Based on 16 acid-base accounts from a previous, metallurgical study, all 16 samples were net acid neutralizing, with sulphide between 0.1 and 0.9% S, and Neutralization Potentials from 53 to $114 \mathrm{~kg} / \mathrm{t}$. Flotation recovery of sulphide reduced the sulphide levels in the synthetic tailings.
- Detailed mineralogy was examined in 18 thin sections, representing feldspar quartz porphyry (rock code PPFQ), tourmaline breccia, pneumatolytic breccia, and volcanics. Even one rock unit (PPFQ) was not entirely intrusive. Some PPFQ samples were porphyritic volcanics of felsic and intermediate composition (dacitic - andesitic), and one sample was a fine grained, feldspathic intrusive rock classified as either syenite or anorthosite, depending on the composition of feldspar. Groundmass in these samples was generally around one-half of the
total, with the groundmass consisting of more than 90% feldspar, and accessory amounts of quartz, chlorite, sericite, carbonate, and opaques. Sulphide minerals were mostly disseminated and as veinlets and clusters, and mostly pyrite and chalcopyrite with less common molybdenite and bornite. Carbonate minerals, mostly reported as veins, patches, and groundmass, were not individually identified and were sometimes seen as feldspar replacement/alteration.

Results of Acid-Base Accounting (ABA)

As part of the ABA procedure, paste pH is measured in a mixture ("paste") of pulverized sample and deionized water. Paste pH in the 59 core samples for Schaft Creek ranged from 7.6 to 8.6. Thus, no samples were acidic at the time of analysis.

Total sulphur in the 59 Schaft Creek rock samples ranged from 0.02 to 1.91% S, with a mean of 0.45% S and a median of 0.26% S. In most samples, total sulphur and sulphide were similar, and thus the two parameters were typically interchangeable. Because a few samples did contain elevated leachable sulphate, sulphide is a better indicator of acid potential than total sulphur for Schaft Creek rock. However, in many samples, most sulphide was copper-bound sulphide (chalcopyrite) which may have less capacity to generate acidity. Therefore, each sample has a maximum "worst-case" Sulphide-Based Acid Potential (SAP) and a minimum "best-case" Pyrite-Calculated Acid Potential (PAP).

Sobek (EPA 600) Neutralization Potential (NP) ranged from 40 to $219 \mathrm{~kg} / \mathrm{t}$ in the 59 Schaft Creek samples, with a mean of 97 and a median of $92 \mathrm{~kg} / \mathrm{t}$. These are relatively high values. They explain why no acidic paste pH values were detected, and suggest there could be a long lag time (years to decades) before these samples might become acidic. A certain amount of measured NP is typically "unavailable" for neutralization, and thus should be subtracted from measured values. The lack of acidic paste pH values precluded an initial estimate of Unavailable Neutralization Potential, so the common value of $10 \mathrm{~kg} / \mathrm{t}$ is used here. NP was typically greater than inorganic carbonate in many samples, meaning NP also reflected the presence of non-carbonate aluminosilicate minerals. These minerals have been documented in Schaft Creek rock. Also, NP did not correlate well with solid-phase calcium plus magnesium levels, but some samples showed that calcium-bearing minerals could account for their NP levels.

Best-case and worst-case net balances of acid-generating and acid-neutralizing capacities were calculated for each of the 59 Schaft Creek samples. Overall, only $0-2 \%$ of the samples were net acid generating and $5-14 \%$ were "uncertain" based on generic criterion. Thus, most samples were net neutralizing. PPAU and PPFQ were the major rock units with uncertain samples, while net-acid-generating or uncertain samples were found in the minor rock units of ANDS, TOBR, BRIV, and DIOR.

To generally assess the spatial distribution of net balances, a general east-west cross-section showed the center area was net-neutralizing, while net-acid-generating and uncertain samples were found on the periphery. The general north-south cross-section showed uncertain samples were found in three adjacent holes. Based on this limited information, the net-acid-generating and
uncertain samples may be spatially restricted in the Schaft Creek Deposit, but additional samples and geostatistical modelling are needed to confirm this.

Results of Total-Element Analyses

Total-element levels in the 59 Schaft Creek samples were measured by ICP-MS analysis after strong four-acid digestion and by x-ray-fluorescence whole-rock analysis. The 59 samples of Schaft Creek core were predominantly composed of silicon and aluminum, reflecting the abundant aluminosilicate minerals. Calcium, iron, potassium, magnesium, sodium, and Loss on Ignition (LOI) were also relatively abundant. Compared to general crustal abundances, the 59 samples were frequently elevated in silver, bismuth, copper, molybdenum, and selenium, and occasionally elevated in sulphur, antimony, and tungsten. However, solid-phase levels do not typically reflect leaching rates into water, so additional testwork is needed on metal leaching. Only copper showed some correlation with sulphide, reflecting the copper-bound sulphide discussed under Acid-Base Accounting. For Sobek Neutralization Potential, calcium showed some correlation. Samples of some rock units, particularly tourmaline breccia (TOBR), stood out as a distinct group for some elements like gallium, phosphorus, thallium, tungsten, and uranium.

Recommendations for Future ML-ARD Work

A phased approach, with each focussing on resolving uncertainties raised in previous ones, is recommended in the provincial ML-ARD Prediction Manual. Thus, based on the preceding initial information, we offer the following recommendations for the next phase of ML-ARD studies at the Schaft Creek Project.

- Overburden should be analyzed for ML-ARD potential. Up to several tens of meters of overburden have been reported in drillholes. This overburden in the pit area would be disturbed and oxidized during mining, and might be used for reclamation during and after operation.
- Unavailable Neutralization Potential (UNP) could not be reliably estimated from available data (Section 4.1.3), but affects net balances. Therefore, UNP should be determined better for Schaft Creek. This would likely require humidity cells (see below).
- Most samples with NPR < 2 were between 1.0 and 2.0, meaning their ARD potential is "uncertain" at this time (Section 4.1.5). This uncertain range should be resolved for proper planning of waste management and water management. Humidity cells would help with this (see next recommendation).
- Six laboratory-based kinetic tests, known as humidity cells, should be conducted for at least 40 weeks on $1-\mathrm{kg}$ samples of Schaft Creek rock. These would provide bulk rates of acid generation, neutralization, and metal leaching, and would help in resolving UNP and "uncertain" samples (see above). Previous information on weathered core suggested reaction rates in Schaft Creek rock were low.
- Four on-site leach tests, each containing up to approximately one tonne of disturbed rock or broken core, should be set up at Schaft Creek and periodically sampled as part of routine on-site water-quality monitoring. These would provide on-site drainage-chemistry data and are important for upscaling the smaller-scale humidity cells.
- At this time, the net-acid-generating and "uncertain" samples may be clustered in portions of the deposit, which would focus waste management and any special handling onto specific zones. To examine this clustering further, additional core samples, including 2006 holes, should be collected from across the deposit and submitted for expanded acid-base accounting and totalelement contents. The results would be used in geostatistical modelling (see next recommendation).
- Three-dimensional geostatistical modelling should be carried out to calculate total tonnages and year-by-year tonnages of net-acid-generating, currently "uncertain", and net-neutralizing rock. This is important for identifying the most cost-effective options for waste management and water management.

1. INTRODUCTION

Whenever mined rock is exposed to air and moisture, the rates of weathering, oxidation, and leaching can accelerate. If sulphide minerals like pyrite are exposed, the oxidation will release acidity, some metals, sulphate, and heat. If the acidity is not neutralized by minerals like calcite or feldspar in the rock, the resulting acidic water is called "acid rock drainage" (ARD) in British Columbia.

Whether sulphide minerals are present or not, weathering can still lead to accelerated metal leaching (ML). For example, the simple dissolution of carbonate minerals can release metals like manganese.

ML-ARD is often associated with minesites, where it is well documented (e.g., Morin and Hutt, 1997 and 2001). As a result, the accurate prediction and control of ML-ARD at minesites in British Columbia are high priorities of the provincial government, as explained in its formal Policy, Guidelines, and draft Prediction Manual (Price and Errington, 1998; Price, 1998; Price et al., 1997). This report follows the recommendations of those documents.

Because the provincial documents recommend a phased approach, this report compiles and interprets the currently existing information related to ML-ARD at the Schaft Creek Project. General background information is provided in Chapter 2. The ML-ARD samples, and the static analyses applied to them, are described in Chapter 3. The analytical results are discussed in Chapter 4. Chapter 5 concludes with recommendations for the next phase of ML-ARD work, including additional testwork as discussed in the provincial Prediction Manual. All relevant data are compiled in the appendices.

2. GENERAL INFORMATION AND PREVIOUS ML-ARD-RELATED STUDIES

The information presented below has been extracted mostly from the Project Description (Copper Fox Metals Ltd., 2006), a resource estimate by Giroux and Ostensoe (2003), and the 2005 drilling report (Fischer and Hanych, 2006).

2.1 Location and History

The Schaft Creek property is located in the mountainous terrain of northwestern British Columbia, approximately $1,000 \mathrm{~km}$ northwest of Vancouver. The area is located 80 kilometers southwest of Telegraph Creek and approximately 76 kilometers west of the Stewart-Cassiar paved highway (Highway 37). The mineral claims of interest are situated near the headwaters of Schaft Creek, a tributary of Mess Creek, which flows into the Stikine River downstream of the community of Telegraph Creek.

Schaft Creek is located in the coastal climate zone of British Columbia and is characterized by cool summers and cold humid winters. Elevations on the property range from 500 to $2,000 \mathrm{~m}$ above sea level. Average annual precipitation is estimated to be 640 mm or roughly 84% greater than that recorded at Telegraph Creek. Temperatures are strongly influenced by the Coast Mountains and may range from above $+20^{\circ} \mathrm{C}$ in the summer to below $-20^{\circ} \mathrm{C}$ in winter.

The Schaft Creek copper-gold-molybdenum-silver prospect was identified in 1957 by prospector Nick Bird while employed by the BIK Syndicate. Three diamond drill holes were drilled to moderate depths. Sample results from two of the holes returned sufficient copper values and resulted in further work. The prospecting syndicate was re-organized in 1966 into Liard Copper Mines Ltd. (" Liard") with Silver Standard Mines Limited, holding a 66\% interest, acting as the manager. In 1966 ASARCO obtained an option to explore the Liard Copper Mines Ltd. ground and carried out geological and induced polarization surveys. The program included drilling 10,939 feet (3,335 metres) over 24 holes. The option was not maintained despite encouraging drill results and in 1968 Hecla Mining Company of Canada Ltd., a subsidiary of Hecla Mining Company of Wallace, Idaho, entered an option agreement to earn a 75% property interest and commenced drilling and other exploration work with Hecla operating company as its agent.

From 1968 through 1977, Hecla completed a total of 34,500 metres of diamond drilling, 6,500 metres of percussion drilling, induced polarization and resistivity surveys, geological mapping, air photography, and engineering studies related to the development of a large open pit copper-gold-molybdenum mine. In 1978 Wright Engineers Ltd. was contracted by Hecla to update a preliminary feasibility assessment initially completed in 1970. Exploration work at the property ceased in 1977 and in 1978 Hecla sold its interest to Teck Corporation ("Teck") (now Teck Cominco Limited).

In 1980 Teck commenced a program of exploration and drilling designed to confirm and expand Hecla's work. A total of 26,000 metres of diamond drilling was completed by 1981. Teck then undertook an engineering study to determine the feasibility of mine development. Further data
reviews were completed by Western Copper Holdings in 1988 and Teck in 1993. A total of 230 core holes with a total length of 60,200 metres and percussion holes with total length 6,500 metres have been completed at the Schaft Creek property. Copper Fox Metals has completed 15 large diameter (PQWL) drill holes across the Main Liard and West Breccia zones for a total of 3,161 meters. A total of 50,000 pounds of core is presently undergoing geological assessment and reporting before metallurgical testing of this new core is initiated.

The feasibility work completed on the Schaft Creek site has been focussed on the development of an open pit within the Liard Zone. The present plan would see mining of up to 70,000 tonnes per day of ore using conventional drill and blast mining methods with a maximum estimated strip ratio of 1.13.

2.2 Geology

The Schaft Creek copper-gold-molybdenum property is located in the northern part of the Intermontane Belt of the Canadian Cordillera. It is part of the northwesterly trending suite of porphyry-style mineral deposits that extends in Canada from the Copper Mountain/Ingerbelle deposit near the southern International Boundary to Casino in west-central Yukon. Globally, such deposits typically exhibit a few characteristics in common and many variations.

The Schaft Creek copper-gold-molybdenum deposit is hosted principally by Upper Triassic age volcaniclastic rocks. They have been variously altered and disrupted by emplacement of feldspar porphyry dykes and, possibly, sills and by several northwest-trending faults. Augite porphyry basalt is present in proximity to the west of the deposit area and also in the Liard mineral zone but its relationship to mineralization has not been determined. The mineralized area is, arguably, in fault contact, or disconformably or unconformably overlain by unmineralized, comparatively unaltered and undisturbed purple weathering andesitic volcanic rocks. Geological mapping at surface, aided by diamond drill core information, has failed to reveal any strong overall pattern of stratigraphic or petrologic controls to mineralization.

The Schaft Creek copper-gold-molybdenum deposit is widely acknowledged as being a porphyry copper deposit. The deposit consists of three distinct but connected zones: (a) the Liard (Main) zone hosted mainly by andesite flows and epiclastic rocks; (b) the West Breccia zone, a faultbounded tourmaline-sulphide matrix breccia; and (c) the Paramount zone, an intrusive breccia in altered andesite, granodiorite and quartz monzonite.

The broad, northerly plunging Liard, or Main, zone extends 1,000 metres in a northerly direction, 700 metres east-west, and has average thickness of 300 metres. It is a weakly altered stockwork system in volcanics (andesite flows and fragmentals) with minor felsic intrusive dykes carrying disseminated sulphide mineralization. A pyrite halo surrounds chalcopyrite, bornite and molybdenite mineralization in altered and faulted andesite. The zone has a low grade phyllic core and to the northwest is progressively down dropped on faults.

The West Breccia zone exhibits tourmaline, silicification and sericitization and is controlled by north-trending faults. Mineralization is contained within tourmaline and sulphide rich hydrothermal breccia. The Zone has a length of 500 metres, averages 100 metres in width and has been drilled to depths greater than 300 metres. Pyrite is the principal sulphide mineral, with lesser quantities of chalcopyrite and molybdenite. Copper and molybdenum contents are erratic but often high.

The Paramount zone of intrusive breccia occurs in granodiorite and quartz monzonite and has dimensions of 700 metres length, 200 metres width and +500 metres thickness. Exploration to the north has been constrained by practical considerations: rapidly increasing thicknesses of overlying apparently barren purple volcanic rocks challenge drilling methods and mitigate against practical conceptual open pit designs. The mineralization is contained in an intrusive breccia in altered andesite, granodiorite and quartz monzonite. Pyrite, bornite and chalcopyrite are present in equal proportions and molybdenite values exceed those found in the other two zones.

Additional information comes from the provincial Minfile website (http://minfile.gov.bc.ca/ Summary.aspx?minfilno=104G++015):
"Mineralization occurs partly within a basin-like structure of fragmental and undivided green andesites, 900 metres in diameter. The basin is intruded by augite porphyry basalt and by vertical north striking quartz diorite dykes. A breccia cuts the western edge of the basin and trends north for at least 2700 metres. Post-mineralization mafic dykes are common. Later flat-lying fragmental purple andesites unconformably overlie the northeastern part of the deposit.
"In general, pyrite, chalcopyrite, bornite and molybdenite occur predominantly in fractured andesites. Less than 10 per cent of the mineralization occurs in felsic intrusives. Pyrite and bornite are mutually exclusive and most of the main deposit occurs within the bornite zone, with pyrite on the periphery. A barren zone, which contains no sulphides, conformably underlies the main deposit.
"Feldspathization and hydrothermal alteration are associated with mineralization. A quartz vein stockwork with biotite and some potassium feldspar coincides with the low-grade core of the main deposit. The biotite has a potassium/argon age of $182 \mathrm{Ma}+/-5 \mathrm{Ma}$. Epidote appears abruptly near the boundaries of the main deposit. Most mineralization occurs in an intermediate zone marked by chlorite- sericite alteration and the absence of epidote. Tourmaline and gypsum are locally abundant.
"The distribution of most sulphide minerals is fracture-controlled. They occur in dry fractures or combined with quartz or quartz-calcite veinlets within the andesitic volcanics. The sulphides within the felsic intrusives are usually disseminated and seem to have replaced the mafic minerals. Trace amounts of covellite, chalcocite, tetrahedrite and native copper have been identified. Minor amounts of galena and sphalerite occur in the breccia zone and in small calcite veins. Gold and silver are associated with the sulphides and average 0.34
grams per tonne and 1.71 grams per tonne, respectively."

2.3 Past ML-ARD-Related Work

During an examination of existing core, Associated Mining Consultants Ltd. (2004) observed, "It has been noted that the core from previous drilling programs, which is stored on site, exhibits a remarkable degree of preservation with limited visible weathering."

Also, after a visual assessment of the integrity of the core samples, Associated Mining Consultants Ltd. (2004) selected 16 samples for assay validation based on prior documentation of assays, lithology, and spatial distributions. These 16 samples selected were subjected to standard Acid-Base accounting procedures to assess any acid generation and environmental impact concerns (Table 2-1). Because only statistical summaries but no individual analyses were presented, these analyses were not added to the Phase 1 database in this study (Appendix B).

Table 2-1. Statistical Results of Previous Acid-Base Accounting for Sixteen Samples (from Associated Mining Consultants Ltd., 2004)

Parameter	Average	Range
Sulphide (\%S)	0.43	$0.1-0.9$
Paste pH	8.8	$7.5-9.3$
Acid Potential (kg CaCO ${ }_{3}$ eq/tonne)	13.4	$3.4-28.6$
Neutralization Potential ($\mathrm{kg} \mathrm{CaCO}_{3}$ eq/tonne)	75.5	$53-114$
Net Potential Ratio (NPR or NP/AP)	7.36	$3.0-16.9$
Net Neutralization Potential (NP-AP, $\mathrm{kg} \mathrm{CaCO}_{3}$ eq/tonne)	+62.2	+45 to +91

Then, five samples were selected from the suite of 16 for metallurgical validation using standard batch grinding and rougher flotation procedures for sulphides. The five samples selected for metallurgical validation were taken from drill holes H61, T182, T186, T172, and T176.

Based on all this work, Associated Mining Consultants Ltd. (2004) concluded,
"The mineralogy is unlikely to pose acid generation concerns based on the analysis of the 16 selected core samples. Acid-Base accounting results indicated an excess neutralization potential of over twice the estimated acid potential in all cases and the paste pH ranged from neutral to alkaline. With the low head sulphide content in the samples to start and high flotation recoveries, the total sulphur in the tailings was reduced to below 0.03% to further reduce concerns on environmental impact."

As an addendum to Fischer and Hanych (2006), mineralogy was visually determined, using thin-section petrography, on 18 samples. This work focussed on feldspar quartz porphyry (rock code PPFQ, Table 3-1), with a few samples from tourmaline breccia, pneumatolytic breccia and volcanics. It was not meant to be representative of the Schaft Creek lithologic suite. Major observations from this work follow.
"- Not all samples logged as PPFQ are intrusives. Some are porphyritic volcanics of felsic and intermediate composition (dacitic - andesitic); one sample is a fine grained, feldspathic intrusive rock classified as either syenite or anorthosite, depending on the composition of feldspar.

- All rocks classified as FQP [PPFQ] are porphyritic, felsic, massive igneous rocks.
- All have plagioclase as the predominant phenocryst mineral. Quartz phenocrysts ('quartz eyes') are relatively rare, very subordinate to plagioclase phenocrysts.
- A few samples have no quartz phenocrysts (quartz eyes) and therefore are feldspar porphyry.
- Ferromagnesian ('Femag') phenocrysts are consistently completely replaced by secondary minerals, generally chlorite and accessory leucoxene, opaques, in places by sericite and skeletal fine grained opaques and highly refracting brown minerals.
- The groundmass makes up a variable portion of the rock, generally $1 / 2$.
- The groundmass consists of $>90 \%$ feldspar, and accessory amounts of quartz, chlorite, sericite, carbonate, opaques.
- The groundmass in all cases is fine grained to very fine grained, generally 100 to 200 microns ($0.1-0.2 \mathrm{~mm}$) grain size, in some samples extremely fine grained (20-50 microns). Differences in grain size of the groundmass feldspar is noticeable and attributed to varying cooling rates.
- The shape of groundmass feldspar and other minerals is generally anhedral, interlocking. Lathy and feathery feldspar are rare but were observed.
- Only accessory amounts of fresh potassic feldspar (microcline) and albite were observed in some feldspar-quartz-porphyries and are interpreted as very limited, secondary, potassic alteration.
- The common pink to orange colour of the samples is attributed to ubiquitous micron-size sericite grains within plagioclase phenocrysts and to a lesser degree in groundmass feldspar. It is pointed out that 'sericite' is a synonym for fine grained muscovite which is a potassic phyllosilicate. It appears justified to describe this partial alteration as 'potassic'.
- Fast cooling of the liquid that formed the groundmass is interpreted for all Liard Zone FQP samples. This is in contrast to the grains size of the interstitial minerals in the Hickman /Yeheniko samples which are medium grained (0.3-1 mm)
- This fast cooling of the inter-phenocryst liquid can be interpreted either as due to relatively small intrusive bodies or surface-near (subvolcanic) bodies.
- Alteration is weak to moderate. Mostly sericite, minor carbonate, chlorite, rare potassic, i.e., microcline.
- Sulphides in feldspar-quartz-porphyry and volcanics occur both in veins; and as disseminations, associated with hairline fractures and grain boundaries, and with minor quartz, carbonate, chlorite and sericite.

Other observations from the individual thin sections include:

- Undifferentiated plagioclase was typically the major mineral, with fine-grained sericite and quartz often significant.
- Sulphide minerals were mostly disseminated and as veinlets and clusters, and mostly pyrite and chalcopyrite with less common molybdenite and bornite
- Pyrite was typically $0.05-1.0 \mathrm{~mm}$ in size as subhedral to anhedral grains, but variable among samples.
- Carbonate minerals, mostly reported as veins, patches, and groundmass, were not individually identified and were sometimes seen as feldspar replacement/alteration.

2.4 Important ML-ARD Observations from Previous Studies

Based on the preceding subsections, important observations pertaining to ML-ARD were:

- The Schaft Creek copper-gold-molybdenum deposit is widely acknowledged as being a porphyry copper deposit. It contains three mineral zones: the Liard, West Breccia, and Paramount Zones.
- During an examination of existing core, "It has been noted that the core from previous drilling programs, which is stored on site, exhibits a remarkable degree of preservation with limited visible weathering." Thus, the oxidation rate of Schaft Creek rock may be relatively slow.
- Based on 16 acid-base accounts from a previous, metallurgical study, all 16 samples were net acid neutralizing, with sulphide between 0.1 and 0.9% S, and Neutralization Potentials from 53 to $114 \mathrm{~kg} / \mathrm{t}$. Flotation recovery of sulphide reduced the sulphide levels in the synthetic tailings.
- Detailed mineralogy was examined in 18 thin sections, representing feldspar quartz porphyry (rock code PPFQ), tourmaline breccia, pneumatolytic breccia, and volcanics. Even one rock unit (PPFQ) was not entirely intrusive. Some PPFQ samples were porphyritic volcanics of felsic and intermediate composition (dacitic - andesitic), and one sample was a fine grained, feldspathic intrusive rock classified as either syenite or anorthosite, depending on the composition of feldspar. Groundmass in these samples was generally around one-half of the total, with the groundmass consisting of more than 90% feldspar, and accessory amounts of quartz, chlorite, sericite, carbonate, opaques. Sulphide minerals were mostly disseminated and as veinlets and clusters, and mostly pyrite and chalcopyrite with less common molybdenite and bornite. Carbonate minerals, mostly reported as veins, patches, and groundmass, were not individually identified, and were sometimes seen as feldspar replacement/alteration.

3. SAMPLING AND ANALYSIS

3.1 Sample Selection and Collection

Based on the 2005 diamond-drillhole Report (Fischer and Hanych, 2006), the important rock units and their total footages in the core are listed in Table 3-1. Results from the 2006 drilling program were not available for this Phase 1 study, and were thus not included here.

Table 3-1. Important Rock Units and Their Observed Abundances in 2005 Drill Core (based on Fischer and Hanych, 2006)

Rock-Unit Code	Description	Percentage of Footage in 2005 Core
PPAU	Plagioclase-Augite-phyric Andesite	32.1%
ANPL (and ANLP)	Andesitic Lapilli Tuff	19.6%
ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	14.4%
PPFQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	6.6%
ANDS	Andesite	4.5%
BRVL	Volcanic Breccia	4.4%
TOBR	Tourmaline Breccia	4.2%
FAUL and SHER	Faults, and Shear Zone / Faults	3.7%
PPPL	Plagioclase or Feldspar Porphyry	3.0%
ANTF	Andesitic Tuff	2.1%
BRIV	Intrusive Breccia or Felsic Igneous Breccia	1.8%
D/BS	Diabase/Basic dyke	1.5%
DIOR	Diorite	1.1%
BRXX	Diorite Breccia	0.6%
PNBX	Pneumatolytic Breccia	0.5%
VN	Vein	NR
ANNX	Altered Andesite	NR

Phase 1 ML-ARD sampling of the 2005 core was based on two objectives. First, approximately 60 samples would be collected to generally match the percentage abundance in the 2005 core (Table 3-2 and Appendices A and B), although ANPL was under-represented. Second, these samples would be collected from several 2005 holes, from various depths, generally within the proposed mining area (eleven holes, from 05CF234 to 05CF248) to provide three-dimensional spatial coverage.

Rock-Unit Code	Description	Number of ML-ARD Samples (Percentage of Total) ${ }^{1}$
PPAU	Plagioclase-Augite-phyric Andesite	16 (27.1\%)
ANPL (and ANLP)	Andesitic Lapilli Tuff	5 (8.5\%)
ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	11 (18.6\%)
PPFQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	5 (8.5\%)
ANDS	Andesite	4 (6.8\%)
BRVL	Volcanic Breccia	2 (3.4\%)
TOBR	Tourmaline Breccia	4 (6.8\%)
FAUL and SHER	Faults, and Shear Zone / Faults	3 (5.1\%)
PPPL	Plagioclase or Feldspar Porphyry	2 (3.4\%)
ANTF	Andesitic Tuff	2 (3.4\%)
BRIV	Intrusive Breccia or Felsic Igneous Breccia	1 (1.7\%)
D/BS	Diabase/Basic dyke	1 (1.7\%)
DIOR	Diorite	2 (3.4\%)
BRXX	Diorite Breccia	0 (0\%)
PNBX	Pneumatolytic Breccia	0 (0\%)
VN	Vein	0 (0\%)
ANNX	Altered Andesite	1 (1.7\%)
	TOTAL	59
${ }^{1}$ Total includes two duplicates: 14578B from Hole 246 of PPAU, and 14685B from Hole 245 of DIOR.		

The Paramount Zone was not sampled as part of this Phase 1 study.
Each sample was approximately a few hundred grams in weight. It was collected from the uppermost material (already ground to gravel and finer grain sizes) in a sealed plastic bucket that had been in unheated storage in Smithers. Each sample was collected with a fiberglass hand shovel, cleaned with soap and water between samples, and placed into a labelled ziploc bag. All samples were relatively dry, except three saturated and one moist (Appendix A).

Two duplicate samples were collected, with a " B " suffix in Appendices A and B. These duplicate samples were taken from the bottoms of the buckets, instead of the top. Therefore, differences between these duplicates can reflect analytical inaccuracy as well as any variability within theoretically homogenized buckets.

3.2 Sample Analysis

Based on the provincial ML-ARD Prediction Manual (Chapter 1), the Phase 1 samples (Section 3.1) were subjected to several geochemical "static" (one-time) analyses. The 59 samples were sent to ALS Chemex Labs in North Vancouver for:

1) Chemex Package ABA-PKG05A plus C-IR07, which is standard-Sobek (U.S. EPA 600) expanded acid-base accounting (ABA), providing measured and/or calculated values of:

- paste pH in a mixture of pulverized rock and water,
- total sulphur,
- measured sulphide,
- leachable sulphate (both HCl and carbonate leach techniques),
- calculated sulphide by subtracting sulphate from total sulphur,
- barium-bound sulphate calculated from barium analyses,
- calculation of acid potentials based on sulphide levels plus any unaccounted-for sulphur (Sulphide Acid Potential, SAP),
- standard-Sobek neutralization potential (NP) by acid bath and base titration,
- inorganic carbonate for mathematical conversion to Carbonate NP (Inorg CaNP),
- total carbon for mathematical conversion to Carbonate-equivalent NP (Total CaNP),
- excess carbon calculated from the difference between total carbon and inorganic carbon,
- CaNP calculated from calcium (Ca CaNP),
- CaNP calculated from $\mathrm{Ca}+\mathrm{Mg}(\mathrm{Ca}+\mathrm{Mg} \mathrm{CaNP})$,
- various Net Neutralization Potential (NNP) balances of acid neutralizing capacities minus various acid generating capacities, and
- various Net Potential Ratio (NPR) balances of acid neutralizing capacities divided by various acid generating capacities.

2) total-element contents by:

- Chemex Package ME-MS41m: 48-element analysis after strong four-acid digestion, and
- Chemex Package ME-XRF-06: XRF (x-ray-fluorescence) whole rock for 14 elements and parameters.

Mercury was determined separately by digesting a prepared sample with aqua regia for at least one hour in a graphite heating block. After cooling, the resulting solution was diluted with demineralized water and was treated with stannous chloride to reduce the mercury. The resulting mercury was volatilized by argon purging and measured by atomic absorption spectrometry.

ABA and total-element results are compiled in Appendix B and are discussed in Chapter 4.

4. RESULTS OF GEOCHEMICAL STATIC TESTS

As explained in Chapter 3, 57 samples plus two duplicates from Schaft Creek core, drilled in 2005, were subjected to various geochemical static (one-time) analyses. This chapter discusses the results of those analyses, and the analyses are compiled in Appendix B.

4.1 Acid-Base Accounting

As explained in Section 3.2, acid-base accounting (ABA) comprises several individual analyses and calculations. The major categories are paste pH (Section 4.1.1), sulphur species and acid potentials (Section 4.1.2), neutralization potentials (Section 4.1.3), and net balances of acid potentials and neutralization potentials (Section 4.1.4).

4.1.1 Paste pH

Paste pH is measured in a mixture ("paste") of pulverized sample and deionized water. If samples were well weathered and oxidized before analysis, then sometimes acidic pH values are measured, meaning the samples were already generating net acidity. QA/QC data showed the initial deionized water had a pH of $6.0-6.1$, and values were reproducible to within $\pm 0.2 \mathrm{pH}$ units.

Paste pH in the 59 core samples for Schaft Creek ranged from 7.6 to 8.6 (Appendix B and Figure 4-1). Thus, no samples were acidic at the time of analysis.

4.1.2 Sulphur Species and Acid Potentials

Possible sulphur species that could be found in Schaft Creek rock are: sulphide including pyrite and chalcopyrite (Section 2.3), leachable sulphate like gypsum or anhydrite, and nonleachable sulphate like barite. The sum of these species theoretically equals total sulphur, although analytical inaccuracy and the existence of other sulphur species rarely yield an exact balance.

Total sulphur in the 59 rock samples ranged from 0.02 to 1.91%, with a mean of 0.45% S and a median of 0.26% S (Figure $4-1$ and Appendix B). In most samples, total sulphur and sulphide were similar (Figure 4-2), with sulphide representing 87% of total sulphur on average. Thus, the two parameters were typically interchangeable. Internal blanks, internal duplicates, and the two external duplicates showed acceptable QA/QC for total sulphur and sulphide, with RPD values less than 10%.

However, four samples contained more HCl -leachable sulphate than sulphide (Figure 4-3), with two from the major rock unit PPAU (Table 3-1). Carbonate-leachable sulphate, which is an alternative method, showed that only three samples contained more leachable sulphate than sulphide (Appendix B). In any case, a few percent of samples contained significant sulphate, so for better accuracy sulphide is used here instead of total sulphur to calculate acid potential.

Figure 4-1. Paste pH vs. Total Sulphur in the 59 Schaft Creek Rock Samples.

Figure 4-2. Sulphide vs. Total Sulphur in the 59 Schaft Creek Rock Samples.

Figure 4-3. HCl-Leachable Sulphate vs. Total Sulphur in the 59 Schaft Creek Rock Samples.

Figure 4-4. Sulphur Mass Imbalance vs. Total Sulphur in the 59 Schaft Creek Rock Samples.

Non-leachable sulphide as barite $\left(\mathrm{BaSO}_{4}\right)$ was calculated by assuming all barium from the ICP-MS analysis occurred as barite. This worst-case assumption showed that maximum nonleachable barium-bound sulphate would be 0.031% S with a mean of 0.01% (Appendix B). On average, non-leachable sulphide as barite was 5.4% of total sulphur and thus not a major part of the sulphur mass balance.

A QA/QC mass-balance equation for sulphur species is:
 Large negative values of $\% S\left(\mathrm{del}_{\text {actual }}\right)$ indicate the sum of sulphur species exceeds the measured total sulphur, sometimes due to analytical inaccuracy and detection limits. Large positive values indicate either (1) total sulphur was overestimated and/or (2) one or more sulphur species were underestimated. Positive values ("missing sulphur") can be added to acid-generating sulphide for safer calculations. This approach was used here for Schaft Creek rock, to calculate Sulphide-Based Acid Potentials (SAP, Section 4.1.4 and Appendix B).

Based on an allowable inaccuracy of 20\% of total sulphur, 55 of 59 samples had acceptable balances (Figure 4-4). The four samples with significant imbalances had relatively low sulphur, including the sample with the lowest total sulphur. Low sulphur levels have higher probabilities of greater inaccuracies because they are closer to detection limits. In total, 32 of 59 samples had positive values of $\% \mathrm{~S}\left(\mathrm{del}_{\text {actual }}\right)$, so this "missing sulphur" was added to sulphide as a safety factor before calculating Sulphide-Based Acid Potential (SAP, Section 4.1.4 and Appendix B).

Because sulphide minerals in Schaft Creek rock are predominantly pyrite and chalcopyrite, and chalcopyrite does not necessarily generate as much acidity as pyrite upon oxidation, it is worthwhile to separate sulphide into individual sulphide minerals. To do this with ABA and totalelement data (Section 3.2), the following steps were used.

1) Any "missing" sulphur due to mass imbalance (see \%S(del) above) was added to measured/ calculated sulphide;
2) All measured zinc was assumed to occur as sphalerite; all measured molybdenum as molybdenite; all measured mercury as cinnabar; all measured arsenic as arsenopyrite or realgar; and all measured copper as chalcopyrite or proportionally as CuS_{2}; and
3) All the sulphide minerals from Step 2, converted to \%S, were subtracted from Step 1, to obtain calculated pyrite in \%S.
It is important to note that this approach can underestimate pyrite. It can even result in physically impossible negative pyrite concentrations due to analytical inaccuracy, detection limits, and the assumptions of the selected metals occurring only as the stated sulphides.

While several samples have more pyrite (as \%S) than copper-bound sulphide as chalcopyrite and proportionally as CuS_{2} (as \%S), most contain more copper-bound sulphide (Figure 4-5). In fact, most have negative amounts of pyrite. Thus, this approach is not highly reliable. Nevertheless, two different sulphide values will be used in this study to calculate acid potential.

1) The aforementioned Sulphide-Based Acid Potential (SAP) which includes positive values of $\% S\left(\operatorname{del}_{\text {actual }}\right)$ and represents the maximum ("worst case") amount of acid potential.
2) The "Pyrite-Calculated Acid Potential" (PAP) which is based only on calculated pyrite-bound
sulphide, with any value less than one-half the typical detection limit, including negative values, set at one-half the limit ($0.005 \% \mathrm{~S}$); this represents the minimum ("best case") acid potential.

As a result, SAP represented the maximum ("worst case") acid potential, whereas PAP was the minimum ("best case") acid potential. Actual acid potential would be somewhere at or between these two endpoints, but additional testwork would be needed to determine this (Chapter 5).

A scatterplot of SAP and PAP showed that many samples had the low, default PAP value based on 0.005% S (Figure 4-6). A few samples had nearly equivalent values, meaning most of their sulphide was pyrite.

In summary, total sulphur in the 59 Schaft Creek rock samples ranged from 0.02 to 1.91% S, with a mean of 0.45% S and a median of 0.26% S. In most samples, total sulphur and sulphide were similar (Figure 4-2), and thus the two parameters were typically interchangeable. Because a few samples did contain elevated leachable sulphate, sulphide is a better indicator of acid potential than total sulphur for Schaft Creek rock. However, in many samples, most sulphide was copper-bound sulphide (chalcopyrite) which may have less capacity to generate acidity. Therefore, each sample has a maximum Sulphide-Based Acid Potential (SAP) and a minimum Pyrite-Calculated Acid Potential (PAP).

4.1.3 Neutralization Potentials

There are various types of neutralizing capacities in rock samples, all expressed in units of kg CaCO 3 equivalent/tonne (kg / t). These include:
(1) Sobek "bulk neutralization potential" (NP) based on an hours-long acid bath to determine how much acid was neutralized in the short term (EPA 600 technique),
(2) carbonate-equivalent neutralization potential (CaNP) calculated from measured solid-phase levels of inorganic carbonate (Inorg CaNP) or total carbon (Total CaNP), and
(3) calculated CaNP assuming all calcium occurs as calcite (Ca CaNP) or all calcium + magnesium occurs as calcite and dolomite ($\mathrm{Ca}+\mathrm{Mg} \mathrm{CaNP}$).

Each can reveal important aspects of a sample’s capacity to neutralize the acidity generated by sulphide oxidation. All values are compiled in Appendix B.

Short-term bulk Sobek NP ranged from 40 to $219 \mathrm{~kg} / \mathrm{t}$ in the 59 Schaft Creek samples, with a mean of 97 and a median of $92 \mathrm{~kg} / \mathrm{t}$ (Figure 4-7 and Appendix B). These are relatively high values. They explain why no acidic paste pH values were detected (Section 4.1.1), and suggest there could be a long lag time (years to decades) before these samples might become acidic. The two external duplicates and one internal duplicate showed good QA/QC for Sobek NP, with RPD values less than 10%.

Figure 4-5. Calculated Pyrite-Bound Sulphide vs. Copper-Bound Sulphide as Chalcopyrite and CuS_{2} in the 59 Schaft Creek Rock Samples.

Figure 4-6. Pyrite-Calculated Acid Potential (PAP) vs. Sulphide-Based Acid Potential (SAP) in the 59 Schaft Creek Rock Samples.

Figure 4-7. Paste pH vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

Figure 4-8. Inorganic-Carbon-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

Some amount of measured NP is typically "unavailable" for neutralization, often between $5-15 \mathrm{~kg} / \mathrm{t}$ although smaller and larger values have been documented (Morin and Hutt, 1997 and 2001). This can sometimes be seen in scatterplots of NP with paste pH after sufficient time has passed for net acidity to develop. The trends then typically show paste pH generally, but not consistently, decreasing as NP decreases, until acidic pH values are detected.

However, the lack of any acidic paste pH in the 59 samples means that Unavailable NP cannot be estimated at this time. Thus, the common default value of $10 \mathrm{~kg} / \mathrm{t}$ will be used and will be subtracted from all measured values to obtain Available NP (Appendix B and Figure 4-7).

The comparison of total carbon with inorganic carbon showed that both were about the same in nearly all samples (Appendix B). Only four samples had noticeably higher total carbon, but inorganic carbon was still more than half of the total carbon in three of these four samples. In the remaining sample (14816, Appendix B), inorganic carbon was only around 17% of total carbon. This was probably an analytical error, with total carbon too high or inorganic carbon too low. As explained in the next paragraph, inorganic carbon was probably too low in this sample.

A scatterplot of Sobek NP with Inorganic Carbon, converted to the same units (Inorganic CaNP as kg/t), showed that Sobek NP was typically greater than Inorganic CaNP (Figure 4-8). NP was often greater by a factor of 1.5 or more, except above NP values above $100 \mathrm{~kg} / \mathrm{t}$ when the two values converged. Such exceedances of NP above Inorganic CaNP are not common. Nevertheless, this appears valid for Schaft Creek rock based on (a) the consistency of the Schaft Creek results (Figure 4-8) and (b) the mineralogy showing abundant non-carbonate, aluminosilicate minerals (Chapter 2) that can provide neutralization. Based on the trend in Figure 4-8, Inorganic CaNP in anomalous Sample 14816 is likely too low.

Because the type of carbonate (calcite, dolomite, siderite, etc.) was not determined in previous studies (Chapter 2), scatterplots with Inorganic CaNP can sometimes reveal the carbonate composition, if elements like calcium and magnesium mostly occur only with carbonate. For the comparison, calcium was converted to "Ca CaNP" with similar units as Inorganic CaNP. This showed that some samples contained excess carbonate, many contained excess calcium, and some contained both in calcite-equivalent amounts (Figure 4-9). The excess calcium was consistent with calcium-bearing aluminosilicate minerals in Schaft Creek rock (Chapter 2).

A comparison of "Ca+Mg CaNP" to Inorganic CaNP showed that nearly every sample contained more $\mathrm{Ca}+\mathrm{Mg}$ than carbonate (Figure 4-10). This meant that dolomite could not account for all the $\mathrm{Ca}+\mathrm{Mg}$, which was consistent with both calcium-bearing and magnesium-bearing aluminosilicate minerals in Schaft Creek rock (Chapter 2).

Sobek NP showed a better correlation with Ca CaNP (Figure 4-11) than with Inorganic CaNP (Figure 4-9), although the correlation was still poor for both. This suggests calcium-bearing minerals, both carbonate and aluminosilicate, can account for the Sobek NP in several samples, but not all samples. Ca +Mg CaNP displayed an even poorer correlation with Sobek NP (Figure 4-12). Thus, rapid assay-based analyses like calcium and magnesium cannot substitute for the more intensive Sobek NP in Schaft Creek rock.

Figure 4-9. Calcium-Based Neutralization Potential vs. Inorganic-CarbonBased Neutralization Potential in the 59 Schaft Creek Rock Samples.

Figure 4-10. Calcium-Magnesium-Based Neutralization Potential vs. Inorganic-Carbon-Based Neutralization Potential in the 59 Schaft Creek Rock Samples.

Figure 4-11. Calcium-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

Figure 4-12. Calcium-Magnesium-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

In summary, Sobek (EPA 600) Neutralization Potential (NP) ranged from 40 to $219 \mathrm{~kg} / \mathrm{t}$ in the 59 Schaft Creek samples, with a mean of 97 and a median of $92 \mathrm{~kg} / \mathrm{t}$. These are relatively high values. They explain why no acidic paste pH values were detected, and suggest there could be a long lag time (years to decades) before these samples might become acidic. A certain amount of measured NP is typically "unavailable" for neutralization, and thus should be subtracted from measured values. The lack of acidic paste pH values precluded an initial estimate of Unavailable Neutralization Potential, so the common value of $10 \mathrm{~kg} / \mathrm{t}$ is used here. NP was typically greater than inorganic carbonate in many samples, meaning NP also reflected the presence of non-carbonate aluminosilicate minerals. These minerals have been documented in Schaft Creek rock. Also, NP did not correlate well with solid-phase calcium or magnesium levels, but some samples showed that calcium-bearing minerals could account for their NP levels.

4.1.4 Net Balances of Acid-Generating and Acid-Neutralizing Capacities

As explained in Section 4.1.2, the acid-generating capacities of the Schaft Creek samples of rock could be calculated from total sulphur to obtain Total-Sulphur-Based Acid Potentials (TAP), or sulphide plus \%S(del) to obtain Sulphide-Based Acid Potentials (SAP). Because total sulphur was mostly composed of sulphide, TAP and SAP were generally interchangeable. SAP is used here for net balances, because a few samples had significant amounts of leachable sulphate which was not acid generating. As explained in Section 4.1.2, SAP is considered the maximum "worst-case" acid potential for each sample, whereas the Pyrite-Calculated Acid Potential (PAP) is considered the "best-case" minimum.

Neutralization Potentials (NP) were discussed in Section 4.1.3. The current estimate of 10 kg / t was considered unavailable and was subtracted from measured values.

Net balances of these two potentials were calculated to predict whether a sample would be net acid generating, perhaps after a long near-neutral "lag time", or net acid neutralizing indefinitely. Net balances can be calculated using division (Net Potential Ratio, NPR = NP / AP) or subtraction (Net Neutralization Potential, NNP = NP - AP).

Provincially, NPR is preferred and used here. "Adjusted" Sulphide-Based NPR values were obtained by first subtracting $10 \mathrm{~kg} / \mathrm{t}$ of unavailable NP from measured NP:

Adj SNPR $=[\mathrm{NP}-10] /[\%$ S(sulphide + positive delS values) * 31.25]
Similarly, Adjusted Pyrite-Calculated NPR values were calculated by:
Adj PNPR = [NP - 10] / [PAP]
Provincial non-site-specific ABA screening criteria are: NPR <1 is net acid generating, perhaps after some lag time; $1 \leq$ NPR ≤ 2 is uncertain until further testing; and NPR >2 is net acid neutralizing. The implications of using the alternative criterion of 1.0 are discussed below and in Chapter 5.

It is important to note that all discussions of net balances in this report are "unweighted". This means that they were not adjusted to tonnages in the Schaft Creek Deposit. Three-dimensional
geostatistical modelling of geology and ML-ARD parameters should be conducted (Chapter 5; see also Section 4.1.5), to address issues such as (1) the total tonnages of net-acid-generating rock, (2) year-by-year production of net-acid-generating rock, and (3) portions of rock units that are net acid generating.

Worst-case Adjusted SNPR values ranged from 0.86 (net acid generating) to 114 (net neutralizing). Only one sample was less than 1.0 (tourmaline breccia, TOBR), and eight samples (several rock units) were between 1.0 and 2.0 (Figures 4-13 and 4-14, and Appendix B). Only samples with sulphide below 0.6% or Sobek NP above $125 \mathrm{~kg} / \mathrm{t}$ were consistently net neutralizing.

In contrast, best-case Adjusted PNPR values ranged from 1.03 (uncertain) to the default value of 200 which means that PAP was less than 0.01% S (Figures $4-15$ and $4-16$, and Appendix B). No values were less than 1.0, and only three samples from three rock units were less than 2.0. Many samples had the default value of 200. As with Adj SNPR, only samples with sulphide below 0.6% S or Sobek NP above $125 \mathrm{~kg} / \mathrm{t}$ were consistently net neutralizing.

Overall, only $0-2 \%$ of the 59 samples were net acid generating and $5-14 \%$ were uncertain (Table 4-1). Therefore, most samples were net neutralizing. Although the numbers of samples from most rock units were limited, the major rock units ($>5 \%$ of 2005 footage, Table 3-1) with some uncertain samples were PPAU and PPFQ. The minor units with uncertain or net-acid-generating percentages were ANDS, TOBR, BRIV, and DIOR.

In summary, best-case and worst-case net balances of acid-generating and acid-neutralizing capacities were calculated for each of the 59 Schaft Creek samples. Overall, only $0-2 \%$ of the samples were net acid generating and $5-14 \%$ were uncertain based on generic criterion. Thus, most samples were net neutralizing. PPAU and PPFQ were the major rock units with uncertain samples, while net-acid-generating or uncertain samples were found in the minor rock units of ANDS, TOBR, BRIV, and DIOR.

4.1.5 Spatial Distribution of Net Balances

As explained in Section 4.1.4, net balances of acid-generating and acid-neutralizing capacities in the 59 samples of Schaft Creek core showed that most samples were net acid neutralizing. Only $0-2 \%$ of samples were net acid generating and $5-14 \%$ were uncertain.

An important aspect of these balances is whether there are any major spatial distributions through the Schaft Creek Deposit. For example, if all net-acid-generating and uncertain samples were located in one area, this area could be targetted for special mining and waste management.

Spatial distributions are best determined by geostatistical modelling combined with the Schaft Creek geologic model (Chapter 5). However, as a general indication here, one general eastwest and one general north-south vertical cross-section were plotted, with drillholes moved laterally onto the plane of the section.

Figure 4-13. Worst-Case Adjusted Sulphide-Based Net Potential Ratio vs. Sulphide in the 59 Schaft Creek Rock Samples.

Figure 4-14. Worst-Case Adjusted Sulphide-Based Net Potential Ratio vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

Figure 4-15. Best-Case Adjusted Pyrite-Calculated Net Potential Ratio vs. Sulphide in the 59 Schaft Creek Rock Samples.

Figure 4-16. Best-Case Adjusted Pyrite-Calculated Net Potential Ratio vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

Table 4-1. Summary of Net-Acid-Generating, Uncertain, and Net-Neutralizing Percentages of Samples from 2005 Drill Core				
		Best-case and worst-case percentages ${ }^{2}$ of . .		
Rock-Unit Code	ARD Samples ${ }^{1}$	Net acid generating	Uncertain	Net neutralizing
PPAU	16	0\%	0-12.5\%	87.5-100\%
ANPL (and ANLP)	5	0\%	0\%	100\%
ANPF	11	0\%	0\%	100\%
PPFQ	5	0\%	20-40\%	60-80\%
ANDS	4	0\%	25-25\%	75-75\%
BRVL	2	0\%	0\%	100\%
TOBR	4	0-25\%	0-25\%	75-75\%
FAUL and SHER	3	0\%	0\%	100\%
PPPL	2	0\%	0\%	100\%
ANTF	2	0\%	0\%	100\%
BRIV	1	0\%	0-100\%	0-100\%
D/BS	1	0\%	0\%	100\%
DIOR	2	0\%	0-100\%	0-100\%
BRXX	0			
PNBX	0			
VN	0			
ANNX	1	0\%	0\%	100\%
	59	0-1.7\%	5.1-13.6\%	84.7-94.9\%
${ }^{1}$ Total includes two duplicates: 14578B from Hole 246 of PPAU, and 14685B from Hole 245 of DIOR.				
${ }^{2}$ Net-acid-generating samples had NPR values less than 1.0, uncertain samples had $1.0<$ NPR <2.0, and net-neutralizing samples > 2.0; best case is defined by the Adjusted PyriteCalculated Net Potential Ratio (Adj PNPR) and the worst case is defined by the Adjusted Sulphide-Based Net Potential Ratio (Adj SNPR).				

Based on the worst-case net balance (Adjusted SNPR, Section 4.1.4), the general east-west cross-section showed the center area was net-neutralizing (Figure 4-17), while net-acid-generating and uncertain samples were found on the periphery. The general north-south cross-section showed uncertain samples were found in three adjacent holes (Figure 4-18). Based on this limited information, the net-acid-generating and uncertain samples may be spatially restricted in the Schaft Creek Deposit, but additional samples and geostatistical modelling are needed to confirm this.

4.2 Total-Element Analyses

Total-element levels in the 59 Schaft Creek samples (Section 3.1) were measured by ICP-MS analysis after strong four-acid digestion and by x-ray-fluorescence whole-rock analysis (Section 3.2). The results are compiled in Appendix B. There was generally good agreement for elements detected by both methods (Appendix B), except chromium whose whole-rock levels were notably higher due to the higher detection limit.

Overall, the dominant elements in the Schaft Creek samples were silicon and aluminum (Appendix B), reflecting the dominance of aluminosilicate minerals (Chapter 2). Calcium, iron, potassium, magnesium, sodium, and Loss on Ignition (LOI) were relatively abundant. LOI typically reflects the loss from the samples of some or all sulphur, carbon, and tightly bound or crystalline water.

To identify the metals and other elements that occurred at relatively high levels in the rock, each element was compared with average crustal abundances, as recommended in provincial MLARD documents (Price, 1998). Any level at least three times greater than the average maximum crustal abundance was highlighted with a box in Appendix B. This showed that the Schaft Creek samples were:

- frequently elevated in silver, bismuth, copper, molybdenum, and selenium; and, - occasionally elevated in sulphur, antimony, and tungsten.

Elevated solid-phase levels of elements do not necessarily mean they will leach into water at high concentrations. In fact, they may be elevated because they did not leach. Additional testwork is needed to evaluate metal leaching in detail (Chapter 5).

Solid-phase correlations of elements can sometimes reveal mineralogical associations. For example, elements correlating with sulphide presumably occur within the sulphide minerals, which at the Schaft Creek Project are typically pyrite and chalcopyrite (Chapter 2). Correlations with Sobek Neutralization Potential (NP, Section 4.1.3) indicate those elements may be concentrated in certain carbonate and aluminosilicate minerals, which can dissolve even in the absence of sulphide oxidation.

The only element that showed some correlation with sulphide was copper. This was discussed in Section 4.1.2. NP showed some correlation with calcium, as discussed in Section 4.1.3, and perhaps minor negative correlations with arsenic and lead. The few samples of tourmaline breccia (TOBR), and a few samples of other units, sometimes stood out as distinct groupings of generally higher or lower levels of elements like gallium, phosphorus, thallium, tungsten, and uranium.

Figure 4-17. General East-West Vertical Cross-Section through the Schaft Creek Deposit, Showing Worst-Case Adjusted Sulphide-Based Net Potential Ratio (0-1 = net acid generating; 1-2 = uncertain; >2 = net acid neutralizing).

Figure 4-18. General North-South Vertical Cross-Section through the Schaft Creek Deposit, Showing Worst-Case
Adjusted Sulphide-Based Net Potential Ratio (0-1 = net acid generating; 1-2 = uncertain; >2 = net acid neutralizing).

In summary, the 59 samples of Schaft Creek core were predominantly composed of silicon and aluminum, reflecting the abundant aluminosilicate minerals. Calcium, iron, potassium, magnesium, sodium, and Loss on Ignition (LOI) were also relatively abundant. Compared to general crustal abundances, the 59 samples were frequently elevated in silver, bismuth, copper, molybdenum, and selenium, and occasionally elevated in sulphur, antimony, and tungsten. However, solid-phase levels do not typically reflect leaching rates into water, so additional testwork is needed on metal leaching. Only copper showed some correlation with sulphide, reflecting the copper-bound sulphide discussed under Acid-Base Accounting. For Sobek Neutralization Potential, calcium showed some correlation, which was also discussed under Acid-Base Accounting. Samples of some rock units, particularly tourmaline breccia (TOBR), stood out as a distinct group for some elements like gallium, phosphorus, thallium, tungsten, and uranium.

5. CONCLUSION AND RECOMMENDATIONS

This report contains the first phase of ML-ARD studies for the Schaft Creek Project. Previous relevant information was compiled. Also, 59 samples of core rejects, from 11 holes drilled in 2005, were collected from cold storage. This set included two duplicates for QA/QC checks. All 59 samples were analyzed for expanded Sobek (EPA 600) acid-base accounting, and for totalelement contents using ICP-MS after four-acid digestion and using x-ray fluorescence whole rock.

Previous Information

The compilation of existing information relevant to ML-ARD led to the following important observations.

- The Schaft Creek copper-gold-molybdenum deposit is widely acknowledged as being a porphyry copper deposit. It contains three mineral zones: the Liard, West Breccia, and Paramount Zones.
- During an examination of existing core, "It has been noted that the core from previous drilling programs, which is stored on site, exhibits a remarkable degree of preservation with limited visible weathering." Thus, the oxidation rate of Schaft Creek rock may be relatively slow.
- Based on 16 acid-base accounts from a previous, metallurgical study, all 16 samples were net acid neutralizing, with sulphide between 0.1 and 0.9%, and Neutralization Potentials from 53 to $114 \mathrm{~kg} / \mathrm{t}$. Flotation recovery of sulphide reduced the sulphide levels in the synthetic tailings.
- Detailed mineralogy was examined in 18 thin sections, representing feldspar quartz porphyry (rock code PPFQ), tourmaline breccia, pneumatolytic breccia, and volcanics. Even one rock unit (PPFQ) was not entirely intrusive. Some PPFQ samples were porphyritic volcanics of felsic and intermediate composition (dacitic - andesitic), and one sample was a fine grained, feldspathic intrusive rock classified as either syenite or anorthosite, depending on the composition of feldspar. Groundmass in these samples was generally around one-half of the total, with the groundmass consisting of more than 90% feldspar, and accessory amounts of quartz, chlorite, sericite, carbonate, opaques. Sulphide minerals were mostly disseminated and as veinlets and clusters, and mostly pyrite and chalcopyrite with less common molybdenite and bornite. Carbonate minerals, mostly reported as veins, patches, and groundmass, were not individually identified and were sometimes seen as feldspar replacement/alteration.

Results of Acid-Base Accounting (ABA)

Paste pH in the 59 core samples for Schaft Creek ranged from 7.6 to 8.6. Thus, no samples were acidic at the time of analysis.

Total sulphur in the 59 Schaft Creek rock samples ranged from 0.02 to 1.91% S, with a mean of 0.45% S and a median of 0.26% S. In most samples, total sulphur and sulphide were similar, and thus the two parameters were typically interchangeable. Because a few samples did contain elevated leachable sulphate, sulphide is a better indicator of acid potential than total sulphur for Schaft Creek rock. However, in many samples, most sulphide was copper-bound sulphide (chalcopyrite) which may have less capacity to generate acidity. Therefore, each sample has a maximum "worst-case" Sulphide-Based Acid Potential (SAP) and a minimum "best-case" Pyrite-Calculated Acid Potential (PAP).

Sobek (EPA 600) Neutralization Potential (NP) ranged from 40 to $219 \mathrm{~kg} / \mathrm{t}$ in the 59 Schaft Creek samples, with a mean of 97 and a median of $92 \mathrm{~kg} / \mathrm{t}$. These relatively high values explain why no acidic paste pH values were detected, and suggest there could be a long lag time (years to decades) before these samples might become acidic. The lack of acidic paste pH values precluded an initial estimate of Unavailable Neutralization Potential, so the common value of $10 \mathrm{~kg} / \mathrm{t}$ is used here.

NP was typically greater than inorganic carbonate in many samples, meaning NP also reflected the presence of non-carbonate aluminosilicate minerals. These minerals have been documented in Schaft Creek rock. Also, NP did not correlate well with solid-phase calcium or magnesium levels, but some samples showed that calcium-bearing minerals could account for their NP levels.

Best-case and worst-case net balances of acid-generating and acid-neutralizing capacities were calculated for each of the 59 Schaft Creek samples. Overall, only $0-2 \%$ of the samples were net acid generating and $5-14 \%$ were "uncertain" based on generic criterion. Thus, most samples were net neutralizing. PPAU and PPFQ were the major rock units with uncertain samples, while net-acid-generating or uncertain samples were found in the minor rock units of ANDS, TOBR, BRIV, and DIOR.

To generally assess the spatial distribution of net balances, a general east-west cross-section showed the center area was net-neutralizing, while net-acid-generating and uncertain samples were found on the periphery. The general north-south cross-section showed uncertain samples were found in three adjacent holes. Based on this limited information, the net-acid-generating and uncertain samples may be spatially restricted in the Schaft Creek Deposit, but additional samples and geostatistical modelling are needed to confirm this.

Results of Total-Element Analyses

The 59 samples of Schaft Creek core were predominantly composed of silicon and aluminum, reflecting the abundant aluminosilicate minerals. Calcium, iron, potassium, magnesium, sodium, and Loss on Ignition (LOI) were also relatively abundant.

Compared to general crustal abundances, the 59 samples were frequently elevated in silver, bismuth, copper, molybdenum, and selenium, and occasionally elevated in sulphur, antimony, and tungsten. However, solid-phase levels do not typically reflect leaching rates into water, so
additional testwork is needed on metal leaching.
Only copper showed some correlation with sulphide, reflecting the copper-bound sulphide discussed under Acid-Base Accounting. For Sobek Neutralization Potential, calcium showed some correlation. Samples of some rock units, particularly tourmaline breccia (TOBR), stood out as a distinct group for some elements like gallium, phosphorus, thallium, tungsten, and uranium.

Recommendations for Future ML-ARD Work

A phased approach, with each focussing on resolving uncertainties raised in previous ones, is recommended in the provincial ML-ARD Prediction Manual. Thus, based on the preceding information, we offer the following recommendations for the next phase of ML-ARD studies at the Schaft Creek Project.

- Overburden should be analyzed for ML-ARD potential. Up to several tens of meters of overburden have been reported in drillholes. This overburden in the pit area would be disturbed and oxidized during mining, and might be used for construction or reclamation during and after operation.
- Unavailable Neutralization Potential (UNP) could not be reliably estimated from available data (Section 4.1.3), but affects net balances. Therefore, UNP should be determined better for Schaft Creek. This would likely require humidity cells (see below).
- Most samples with NPR < 2 were between 1.0 and 2.0, meaning their ARD potential is "uncertain" at this time (Section 4.1.5). This uncertain range should be resolved for proper planning of waste management and water management. Humidity cells would help with this (see next recommendation).
- Six laboratory-based kinetic tests, known as humidity cells, should be conducted for at least 40 weeks on $1-\mathrm{kg}$ samples of Schaft Creek rock. These would provide bulk rates of acid generation, neutralization, and metal leaching, and would help in resolving UNP and "uncertain" samples (see above). Previous information on weathered core suggested reaction rates in Schaft Creek rock were low.
- Four on-site leach tests, each containing up to approximately one tonne of disturbed rock or broken core, should be set up at Schaft Creek and periodically sampled as part of routine on-site water-quality monitoring. These would provide on-site drainage-chemistry data and are important for upscaling the smaller-scale humidity cells.
- At this time, the net-acid-generating and "uncertain" samples may be clustered in portions of the deposit, which would focus waste management and any special handling onto specific zones. To examine this clustering further, additional core samples, including 2006 holes, should be collected from across the deposit and submitted for expanded acid-base accounting and totalelement contents. The results would be used in geostatistical modelling (see next recommendation).
- Three-dimensional geostatistical modelling should be carried out to calculate total tonnages and year-by-year tonnages of net-acid-generating, currently "uncertain", and net-neutralizing rock. This is important for identifying the most cost-effective options for waste management and water management.

6. REFERENCES

Associated Mining Consultants Ltd. 2004. Preliminary Assessment of the Schaft Creek Deposit, British Columbia Project Status Report No. 1. Prepared for 955528 (Alberta) Ltd., dated September 20.

Copper Fox Metals Inc. 2006. Schaft Creek Copper-Gold-Molybdenum-Silver Deposit Project Description. Dated July 2006.

Fischer, P., and W. Hanych. 2006. 2005 Diamond Drill Report Schaft Creek Property Northwestern British Columbia for Copper Fox Metals Inc. Dated March 27.

Giroux, G.H., and E.A. Ostensoe. 2003. Summary Report Status and Resources Estimate Schaft Creek Property Northwestern British Columbia. Prepared for 955528 Alberta Ltd., dated June 30.

Morin, K.A., and N.M. Hutt. 2001. Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies, Digital Edition. MDAG Publishing (www.mdag.com), Surrey, British Columbia. ISBN: 0-9682039-1-4.

Morin, K.A., and N.M. Hutt. 1997. Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies. MDAG Publishing (www.mdag.com), Surrey, British Columbia. ISBN: 0-9682039-0-6.

Price, W.A., K.A. Morin, N.M. Hutt. 1997. Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: Part II. Recommended procedures for static and kinetic testing. IN: Proceedings of the Fourth International Conference on Acid Rock Drainage, May 31-June 6, Vancouver, Canada, Volume I, p. 15-30.

Price, W.A., and J.C. Errington. 1998. Guidelines for Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. Issued by the British Columbia Ministry of Energy and Mines.

Price, W.A. 1998. Draft Manual for the Prediction of Metal Leaching and Acid Rock Drainage. Issued by the British Columbia Ministry of Energy and Mines.

APPENDIX A. Notes on the Collection of Phase 1 ML/ARD Samples by MDAG, February 2007

Schaft Creek Project Trip Report for Static-Test Sampling

K. Morin, February 9, 2007

On February 3 (Saturday), staff at Bandstra Transportation Systems opened Copper Fox’ unheated storage locker. They sorted up to 20 skids to find the 63 buckets containing the initial list of samples for static testing (acid-base accounting and total-element analyses). This saved several hours of Rescan/MDAG time. The selected buckets were consolidated onto two skids, and brought inside to warm up so that saturated samples could be sampled. Six of the 63 sample buckets could not be found and were thus deleted from the sampling list. This left 57 samples to be collected.

On February 7, Kevin Morin flew to Smithers on the early morning flight. At Bandstra, he collected the 57 samples, plus two additional backup samples (Table 1). This involved prying open each bucket, noting the general colour and the dryness of the rejects (gravel, sand, and silt), then removing a few hundred grams from the top of the rejects. To minimize cross-contamination of metals, each sample was removed with a fibreglass hand shovel, after cleaning with disposable soapy wipes and clean paper towels. The two backup samples were collected from the bottom, rather than the top, of the rejects, to check for any significant geochemical variability within each reject bucket.

The 59 samples were shipped in the late afternoon of February 7, by Greyhound Courier, to ALS Chemex Labs in North Vancouver.

Project: Schaft Creek Projec
Client: Copper Fox Metals Inc
Data: Sample Information
Comments: Samples collected for ABA, trace metal, and whole rock analysis On Feb 7 ' 07 by Kevin Morin, MDAG.

Sample No.	Hole Id	Lithology From (m)	To (m)	Rock Code	Mineralization Style	$\begin{gathered} \text { Ch } \\ \text { Chlorite } \end{gathered}$	$\begin{gathered} \text { Ep } \\ \text { Epidote } \end{gathered}$	$\begin{gathered} \mathrm{Bt} \\ \text { Biotite } \end{gathered}$	Alterati Se Sericite		Si Silicic	Hm Hematite	Cb	Tm Tourmaline	
14545	05CF246	12.1	15.2	ANPF	Py, Cp dis	W-M						W			
14565	05CF246	63.6	66.7	ANPF	Cp cb-qtz-ch stkwk	w				W		W			
14571	05CF246	81.8	84.8	PPPL	Py, Cp dis, Mb cb-qtz-ch vn	W				W		X			
14578	05CF246	103.0	106.1	PPAU	Py dis, Cp ch stckwk	W-M				W-M		X			
14578B	05CF246	103.0	106.1	PPAU											
14598	05CF246	154.5	157.6	PPAU	Cp,Py dis	M									5
14689	05CF244	9.1	12.1	PPFQ	Py, Cp, dis, cb-qtz vn, frct	W			w	S		X			
14695	05CF244	27.3	30.3	PPAU	Py, Cp, dis	M-S				W		W			T
14742	05CF244	160.6	163.6	ANLP	Cp dis, Cp,Bn qtz-cb vn, Mb frct	W				W			W		1
14998	05CF248	36.4	39.4	ANPF	STKWK	W									
15862	05CF248	78.8	81.8	ANPF	STKWK, MB-Frct	W	W			W					
15870	05CF248	103.0	106.1	ANLP	STKWK	W				M		w			
15879	05CF248	130.3	133.3	BRVL	STKWK	W	W			W		W			
15887	05CF248	145.5	148.5	ANTF	STKWK, Dis	w	W				w		w		
15891	05CF248	157.6	160.6	ANPF	STKWK	W				W		W			
15908	05CF248	209.1	212.1	PPFQ	STKWK, MB-Frct, Dis, Flt	W									
15911	05CF248	218.2	221.2	ANDS	STKWK, Dis	W				W					
14130	05CF236	18.2	21.2	ANPF	Cu diss \& qtz veins					S	w				
14144	05CF236	60.6	63.6	ANPF	Cu diss \& veins	M				M-S	W	M			
14148	05CF236	72.7	75.8	FAUL	Cudiss	S				S		W			
14156	05CF236	87.9	90.9	FAUL	Mb fracture					W					
14162	05CF236	106.1	109.1	D/BS											W
14169	05CF236	127.3	130.3	PPFQ	Cu, Mb qtz veins \& diss					M-S					
14018	05CF234	18.2	21.2	PPFQ	Disseminated + Vein	W	w		W	W					
14021	05CF234	27.3	30.3	TOBR	Hydro Bx Matrix (vein) + diss	M	W		M	M	M			X	
14036	05CF234	63.6	66.7	TOBR	Stockwork + disseminated	M			S	M	M			X	
14043	05CF234	84.8	87.9	TOBR	Stockwork + disseminated	W	W		M	M	W			X	
14060	05CF234	136.4	139.4	BRIV	Disseminated in matrix	M	M		M	M?		M?			
14067	05CF234	157.6	160.6	ANPF	Disseminated, vein	S	W		S	W	w				
14076	05CF235	18.2	21.2	ANDS	STKWK, Dis	W									
14083	05CF235	39.4	42.4	ANDS	STKWK	W	w								
14099	05CF235	87.9	90.9	PPFQ	Dis	W									
14103	05CF235	100.0	103.0	TOBR	Dis	w	w			w				M	
14232	05CF239	27.3	30.3	PPAU	dis, stkwk, bx vns, Mb frct					W					
14250	05CF239	72.7	75.8	PPAU	stkwk	W				W		w			
14260	05CF239	103.0	106.1	PPAU	stkwk, Cp, Bn in vns	W				W		W			
14276	05CF239	142.4	145.5	ANPF	stkwk, dis, Cp,Mb vns, Mb frct	W	W								
14295	05CF239	200.0	203.0	ANPF	stkwk, Py vns	W	W			W		w			
14301	05CF240	9.1	12.1	ANNX	STKWK, Mb Frct					S					
14323	05CF240	66.7	69.7	PPAU	STKWK, Cp-V	w				W					
14332	05CF240	93.9	97.0	PPAU	STKWK, Mb-Frct	W				W		w			
14345	05CF240	133.3	136.4	ANPF	STKWK, Dis	W				W					
14348	05CF240	142.4	145.5	PPAU	STKWK, Dis, Mb-Frct	W				W				W	
14666	05CF245	51.5	54.5	BRVL	STKWK, Dis, MB-Frct	w	W			W					
14685	05CF245	100.0	103.0	DIOR	STKWK, Dis, MB-Frct	W				M					
14685B	05CF245	100.0	103.0	DIOR											
14797	05CF243	9.1	12.1	PPAU	STKWK, Dis, MB-Frct	w				W					
14808	05CF243	42.4	45.5	FAUL	STKWK, MB-Frct, SHEAR	w				S					
14816	05CF243	66.7	69.7	PPAU	STKWK, PY-Vns	W				M		W			
14828	05CF243	103.0	106.1	PPAU	STKWK, Dis, MB-Frct	w				W					
14844	05CF243	142.4	145.5	ANDS	STKWK, CP-Vn, Dis	W									
14860	05CF243	190.9	193.9	PPAU	STKWK, MB-Frct, CP-Frct	w				w					W
14871	05CF243	224.2	227.3	ANLP	STKWK, CP-Vn,Frct, Dis, SHR,	w	w			W		w			

Project: Schaft Creek Project
Client: Copper Fox Metals Inc
Data: Sample Information
Comments: Samples collected for ABA, trace metal, and whole rock analysis On Feb 7 ' 07 by Kevin Morin, MDAG.

Sample No.	Hole Id	Lithology From (m)	To (m)	Rock Code	Mineralization Style	Ch Chlorite	$\begin{gathered} \text { Ep } \\ \text { Epidote } \end{gathered}$	$\begin{gathered} \mathrm{Bt} \\ \text { Biotite } \end{gathered}$	Alterati Se Sericite	Minerals K K-spar	$\underset{\text { Silicic }}{\mathrm{Si}}$	Hm Hematite	Cb	Tm Tourmaline	
14887	05CF243	263.6	266.7	ANTF	STKWK, CP-Vn, Dis	W	W					W			
14893	05CF247	12.1	15.2	PPAU	Mal frct-1\%, Cp dis	w									5
14899	05CF247	30.3	33.3	PPAU		X						X			
14908	05CF247	57.6	60.6	ANLP	Cp,Bn qtz-cb stkwk, Cp dis	W				W					
14917	05CF247	75.8	78.8	PPPL	Bn dis, qtz-cb vn	X		x		W-M					
14925	05CF247	100.0	103.0	ANLP	Cp qtz-cb vn, dis	W	x			X		w			3

Rock Code Legend:		Mineral Legend:		Legend:	
ANDS	Andesite	Ch	Chlorite	T	Trace
ANNX	Altered Andesite	Ep	Epidote	W	weak
ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	Bt	Biotite	M	moderate
ANPL/ANLP	Andesitic Lapilli Tuff	Se	Sericite	S	strong
ANTF	Andesitic Tuff	K	K-spar		
BRIV	Intrusive Breccia or Felsic Igneous Breccia	Si	Silicic		
BRVL	Volcanic Breccia	Hm	Hematite		
BRXX	Diorite Breccia	Mt	Magnetite		
D/BS	Diabase/Basic dyke	Tm	Tourmaline		
DIOR	Diorite	Cp	Chalcopyrite		
FAUL	Faults	Bn	Bornite		
PNBX	Pneumatolytic Breccia	Py	Pyrite		
PPAU	Plagioclase-Augite-phyric Andesite	Mb	Molybdenite		
PPFQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	Oth	See description		
PPPPL	Plagioclase or Feldspar Porphyry	X	mineral present		

Data: Sample Information

Comments: Samples collected for ABA, trace metal, and whole rock analysis On Feb 7'07 by Kevin Morin, MDAG.

Sample No.	Sulphides \%						Sampling Notes	Assay Data			
	Cp Chalcopyrite	Bn Bornite		Mb Molybdenite	Other	Total		Cu (\%)	Mo (\%)	Au (g/t)	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$
14545	T		T			T	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.113	0.001	0.02	0.4
14565	T					T	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.289	0.002	0.14	0.6
14571	2.0		1.0	0.5		3.5	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.593	0.011	0.13	1.8
14578	T		1.0			1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines (see 14578B)	0.293	0.002	0.04	0.7
14578B							Subsample collected from bottom of rejects stored in white plastic bucket; dry, light grey gravel and fines (see 14578)				
14598	T		T			T	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.075	0.005	0.02	0.3
14689	0.5		1.0	0.5		2.0	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.213	0.008	0.07	0.4
14695	T		0.5			0.5	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.182	0.059	0.13	0.7
14742	T			0.5		0.5	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.223	0.071	0.17	1.0
14998	T	T	0.5	T		0.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.169	0.007	0.14	0.5
15862	T	T		0.5		0.5	Subsample collected from top of rejects stored in white plastic bucket; moist, dark grey gravel and fines	0.116	0.008	0.14	0.6
15870	0.5	T	T	0.5		1.0	Subsample collected from top of rejects stored in white plastic bucket; saturated, medium grey gravel and fines	0.157	0.002	0.09	0.8
15879	0.5	T		T		0.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.224	0.003	0.15	1.5
15887	1.0	T		0.5		1.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.285	0.008	0.28	1.8
15891	T	0.5		0.5		1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.234	0.011	0.21	1.5
15908	0.5	0.5		0.5		1.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.421	0.032	0.38	2.4
15911	0.5	0.5		0.5		1.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.179	0.017	0.15	1.0
14130	T	-1				1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, grey and pink (granite?) gravel and fines	0.555	0.008	0.39	3.3
14144	T	~ 1				1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, grey and pink (granite?) gravel and fines	0.290	0.008	0.20	2.2
14148		T				T	Subsample collected from top of rejects stored in white plastic bucket; saturated, medium grey gravel and fines	0.275	0.020	0.17	1.2
14156		T		1.0		1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, grey and pink (granite?) gravel and fines	0.204	0.005	0.07	1.0
14162							Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.115	0.051	0.09	<0.5
14169	1.0	1.0		<1		<2	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.386	0.016	0.18	3.0
14018			1.0			1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, dark grey gravel and fines	0.147	0.007	0.06	<0.5
14021	2.0		T			2.0	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.173	0.036	0.03	<0.5
14036	4.0					4.0	Subsample collected from top of rejects stored in white plastic bucket; dry, dark grey gravel and fines	0.189	0.061	0.04	5.8
14043	0.0					2.0	Subsample collected from top of rejects stored in white plastic bucket; dry, dark grey gravel and fines	0.153	0.034	0.15	2.0
14060	T-1					T-1	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.280	0.032	0.04	<0.5
14067	1.0					1.0	Subsample collected from top of rejects stored in white plastic bucket; saturated, dark grey gravel and fines	0.247	0.014	0.03	<0.5
14076	T		T			T	Subsample collected from top of rejects stored in white plastic bucket; dry, dark grey-green gravel and fines	0.173	0.005	0.16	<0.5
14083	T		1.0			1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, dark grey gravel and fines	0.130	0.001	0.01	<0.5
14099	0.5		1.0			1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, dark grey gravel and fines	0.157	0.002	0.02	1.1
14103	1.0		T			1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, grey and pink (granite?) gravel and fines	0.266	0.022	0.02	1.0
14232	0.5	1.0	0.5	0.5		2.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines; low weight remaining	0.325	0.011	0.21	1.8
14250	0.5	1.0	0.5	0.5		2.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.300	0.038	0.33	2.0
14260	1.0	0.5	0.5	T		2.0	Subsample collected from top of rejects stored in white plastic bucket; dry, dark grey gravel and fines	0.505	0.016	0.9	3.1
14276	2.0	T	0.5	1.0		3.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines; low weight remaining	0.136	0.003	<0.01	1.0
14295	0.5	T	0.5	T		1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.250	0.001	0.07	0.5
14301	T		T	0.5		0.5	Subsample collected from top of rejects stored in white plastic bucket; dry, grey and pink (granite?) gravel and fines	0.241	0.023	0.09	0.6
14323	0.5	0.5	T	T		1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.200	0.005	0.18	1.6
14332	0.5	0.5	T	1.0		2.0	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.336	0.010	0.16	1.5
14345	2.0	0.5	0.5	0.5		3.5	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.559	0.020	0.19	2.4
14348	1.0	0.5	0.5	0.5		2.5	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.461	0.013	0.13	1.4
14666	0.5		1.0	T		1.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.163	0.002	0.07	0.3
14685	0.5		2.0	T		2.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines (see 14685B)	0.455	0.013	0.18	0.6
14685B							Subsample collected from bottom of rejects stored in white plastic bucket; dry, medium grey gravel and fines (see 14685)				
14797	0.5	0.5		0.5		1.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.184	0.034	0.10	1.0
14808	0.5	0.5		2.0		3.0	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.257	0.040	0.28	1.7
14816	T	0.5	1.0	T		1.5	Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines	0.387	0.008	0.57	2.3
14828	0.5	2.0		0.5		3.0	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.317	0.019	0.74	2.3
14844	1.0	0.5	0.5	T		2.0	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.249	0.010	0.16	1.0
14860	1.0	0.5		0.5		2.0	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.373	0.035	0.25	2.5
14871	2.0	0.5		T		2.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.365	0.034	0.10	0.7

Project:
Client:
Data:
Samper Fox Metals Inc
Comments: Samples collected for ABA, trace metal, and whole rock analysis On Feb 7'07 by Kevin Morin, MDAG

Sample No.	Sulphides \%						Sampling Notes	Assay Data			
	Cp Chalcopyrite	Bn Bornite	Py Pyrite	Mb Molybdenite	Other	Total		Cu (\%)	Mo (\%)	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$
14887	0.5		0.5			1.0	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.196	0.00	0.07	0.7
14893							Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.164	0.008	0.12	0.9
14899							Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.032	0.002	0.03	0.7
14908	1.5	T				0.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.113	0.005	0.08	0.7
14917		0.5				0.5	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.361	0.001	0.31	2.5
14925	T					T	Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines	0.182	0.001	0.11	1.0

Mineral	Legend:	Legend:	
Ch	Chlorite	T	Trace
Ep	Epidote	W	weak
Bt	Biotite	M	moderate
Se	Sericite	S	strong
K	K-spar		
Si	Silicic		
Hm	Hematite		
Mt	Magnetite		
Tm	Tourmaline		
Cp	Chalcopyrite		
Bn	Bornite		
Py	Pyrite		
Mb	Molybdenite		
Oth	See description		
X	mineral present		

APPENDIX B. Compiled Acid-Base Accounting and Total-Element Analyses for Rock at the Schaft Creek Project

Project:
Data:
Comments:

Schaft Creek
Copper Fox Metals Inc.
Sample Information
Sampled by MDAG on Feb 7'07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Sample		Lithology			Centre of		Rock	Rock Code	
Id.	Hole Id	From (m)	$\begin{aligned} & \text { To } \\ & \text { (m) } \end{aligned}$	Interval (m)	Interval (m)	Zone	Code	Description	Mineralization Style
14018	05CF234	18.2	21.2	3.03	19.70	West Breccia	PPFQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	Disseminated + Vein
14021	05CF234	27.3	30.3	3.03	28.79	West Breccia	TOBR	Tourmaline Breccia	Hydro Bx Matrix (vein) + diss
14036	05CF234	63.6	66.7	3.03	65.15	West Breccia	TOBR	Tourmaline Breccia	Stockwork + disseminated
14043	05CF234	84.8	87.9	3.03	86.36	West Breccia	TOBR	Tourmaline Breccia	Stockwork + disseminated
14060	05CF234	136.4	139.4	3.03	137.88	West Breccia	BRIV	Intrusive Breccia or Felsic Igneous Breccia	Disseminated in matrix
14067	05CF234	157.6	160.6	3.03	159.09	West Breccia	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	Disseminated, vein
14076	05CF235	18.2	21.2	3.03	19.70	West Breccia	ANDS	Andesite	STKWK, Dis
14083	05CF235	39.4	42.4	3.03	40.91	West Breccia	ANDS	Andesite	STKWK
14099	05CF235	87.9	90.9	3.03	89.39	West Breccia	PPFQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	Dis
14103	05CF235	100.0	103.0	3.03	101.52	West Breccia	TOBR	Tourmaline Breccia	Dis
14130	05CF236	18.2	21.2	3.03	19.70	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	Cu diss \& qtz veins
14144	05CF236	60.6	63.6	3.03	62.12	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	Cu diss \& veins
14148	05CF236	72.7	75.8	3.03	74.24	Liard Main	FAUL	Faults	Cudiss
14156	05CF236	87.9	90.9	3.03	89.39	Liard Main	FAUL	Faults	Mb fracture
14162	05CF236	106.1	109.1	3.03	107.58	Liard Main	D/BS	Diabase/Basic dyke	
14169	05CF236	127.3	130.3	3.03	128.79	Liard Main	PPFQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	Cu, Mb qtz veins \& diss
14232	05CF239	27.3	30.3	3.03	28.79	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	dis, stkwk, bx vns, Mb frct
14250	05CF239	72.7	75.8	3.03	74.24	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	stkwk
14260	05CF239	103.0	106.1	3.03	104.55	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	stkwk, Cp, Bn in vns
14276	05CF239	142.4	145.5	3.03	143.94	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	stkwk, dis, Cp,Mb vns, Mb frct
14295	05CF239	200.0	203.0	3.03	201.52	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	stkwk, Py vns
14301	05CF240	9.1	12.1	3.03	10.61	Liard Main	ANNX	Altered Andesite	STKWK, Mb Frct
14323	05CF240	66.7	69.7	3.03	68.18	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	STKWK, Cp-V
14332	05CF240	93.9	97.0	3.03	95.45	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	STKWK, Mb-Frct
14345	05CF240	133.3	136.4	3.03	134.85	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	STKWK, Dis
14348	05CF240	142.4	145.5	3.03	143.94	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	STKWK, Dis, Mb-Frct
14797	05CF243	9.1	12.1	3.03	10.61	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	STKWK, Dis, MB-Frct
14808	05CF243	42.4	45.5	3.03	43.94	Liard Main	FAUL	Faults	STKWK, MB-Frct, SHEAR
14816	05CF243	66.7	69.7	3.03	68.18	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	STKWK, PY-Vns
14828	05CF243	103.0	106.1	3.03	104.55	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	STKWK, Dis, MB-Frct
14844	05CF243	142.4	145.5	3.03	143.94	Liard Main	ANDS	Andesite	STKWK, CP-Vn, Dis
14680	05CF243	190.9	193.9	3.03	192.42	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	STKWK, MB-Frct, CP-Frct
14871	05CF243	224.2	227.3	3.03	225.76	Liard Main	ANLP	Andesitic LapilliTuff	STKWK, CP-Vn,Frct, Dis, SHR,
14887	05CF243	263.6	266.7	3.03	265.15	Liard Main	ANTF	Andesitic Tuff	STKWK, CP-Vn, Dis
14689	05CF244	9.1	12.1	3.03	10.61	Liard Main	PPFQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	Py, Cp, dis, cb-qtz vn, frct
14695	05CF244	27.3	30.3	3.03	28.79	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	Py, Cp, dis
14742	05CF244	160.6	163.6	3.03	162.12	Liard Main	ANLP	Andesitic LapilliTuff	Cp dis, Cp, Bn qtz-cb vn, Mb frct
14666	05CF245	51.5	54.5	3.03	53.03	Liard Main	BRVL	Volcanic Breccia	STKWK, Dis, MB-Frct
14685	05CF245	100.0	103.0	3.03	101.52	Liard Main	DIOR	Diorite	STKWK, Dis, MB-Frct
14685B	05CF245	100.0	103.0	3.03	101.52	Liard Main	DIOR	Diorite	
14545	05CF246	12.1	15.2	3.03	13.64	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	Py, Cp dis
14565	05CF246	63.6	66.7	3.03	65.15	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	Cp cb-qtz-ch stkwk
14571	05CF246	81.8	84.8	3.03	83.33	Liard Main	PPPL	Plagioclase or Feldspar Porphyry	Py, Cp dis, Mb cb-qtz-ch vn
14578	05CF246	103.0	106.1	3.03	104.55	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	Py dis, Cp ch stckwk
14578B	05CF246	103.0	106.1	3.03	104.55	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	
14598	05CF246	154.5	157.6	3.03	156.06	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	Cp,Py dis
14893	05CF247	12.1	15.2	3.03	13.64	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	Mal frct-1\%, Cp dis
14899	05CF247	30.3	33.3	3.03	31.82	Liard Main	PPAU	Plagioclase-Augite-phyric Andesite	
14908	05CF247	57.6	60.6	3.03	59.09	Liard Main	ANLP	Andesitic LapilliTuff	Cp,Bn qtz-cb stkwk, Cp dis
14917	05CF247	75.8	78.8	3.03	77.27	Liard Main	PPPL	Plagioclase or Feldspar Porphyry	Bn dis, qtz-cb vn
14925	05CF247	100.0	103.0	3.03	101.52	Liard Main	ANLP	Andesitic LapilliTuff	Cp qtz-cb vn, dis
14998	05CF248	36.4	39.4	3.03	37.88	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	STKWK
15862	05CF248	78.8	81.8	3.03	80.30	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	STKWK, MB-Frct
15870	05CF248	103.0	106.1	3.03	104.55	Liard Main	ANLP	Andesitic LapilliTuff	STKWK
15879	05CF248	130.3	133.3	3.03	131.82	Liard Main	BRVL	Volcanic Breccia	STKWK
15887	05CF248	145.5	148.5	3.03	146.97	Liard Main	ANTF	Andesitic Tuff	STKWK, Dis
15891	05CF248	157.6	160.6	3.03	159.09	Liard Main	ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	STKWK
15908	05CF248	209.1	212.1	3.03	210.61	Liard Main	PPFQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	STKWK, MB-Frct, Dis, Flt

Project:

Client:
Data:
Comments:
Schat Creek
Copper Fox Metals Inc.
Sample information
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Sample Id.	Hole Id	Lithology From (m)	To (m)	Interval (m)	Centre o Interval (m)	Zone	Rock Code	Rock Code Description	Mineralization Style
15911	05CF248	218.2	221.2	3.03	219.70	Liard Main	ANDS	Andesite	STKWK, Dis
							Rock Code Legend:		
							ANDS	Andesite	
							ANNX	Altered Andesite	
							ANPF	Plagioclase-phyric or Feldspar-phyric Andesite	
							ANPL/ANLP	Andesitic Lapilli Tuff	
							ANTF	Andesitic Tuff	
							BRIV	Intrusive Breccia or Felsic Igneous Breccia	
							BRVL	Volcanic Breccia	
							BRXX	Diorite Breccia	
							D/BS	Diabase/Basic dyke	
							DIOR	Diorite	
							FAUL	Faults	
							PNBX	Pneumatolytic Breccia	
							PPAU	Plagioclase-Augite-phyric Andesite	
							PPFPQ	Quartz-Feldspar or Feldspar-Quartz Porphyry	
							PPPL	Plagioclase or Feldspar Porphyry	
							SHER	Shear Zone / Faults	
							TOBR	Tourmaline Breccia	
							VN		

Project:
Data:
Comments:

Sample Id.	Alteration Minerals										$\begin{gathered} \text { Cp } \\ \text { Chalcopyrite } \end{gathered}$	$\begin{gathered} \mathrm{Bn} \\ \text { Bornite } \end{gathered}$	Sulphides \%		Other	Total	Assay Data				
	Ch Chlorite	$\begin{gathered} \text { Ep } \\ \text { Epidote } \end{gathered}$	$\begin{gathered} \mathrm{Bt} \\ \text { Biotite } \end{gathered}$	Se Sericite	$\underset{\text { K-spar }}{\text { K }}$	Si Silicic	$\begin{gathered} \mathrm{Hm} \\ \text { Hematite } \end{gathered}$	Cb			Py Pyrite		Mb Molybdenite	Cu (\%)			Mo (\%)	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	Ag (g/t)		
14018	w	w		w	w									1.0			1.0	0.147	0.007	0.06	<0.5
14021	M	w		M	M	M			x		2.0		T			2.0	0.173	0.036	0.03	<0.5	
14036	M			S	M	M			X		4.0					4.0	0.189	0.061	0.04	5.8	
14043	W	w		M	M	W			X		0.0					2.0	0.153	0.034	0.15	2.0	
14060	M	M		M	M?		M?				T-1					T-1	0.280	0.032	0.04	<0.5	
14067	S	w		S	w	w					1.0					1.0	0.247	0.014	0.03	<0.5	
14076	w										T		T			T	0.173	0.005	0.16	<0.5	
14083	w	w									T		1.0			1.0	0.130	0.001	0.01	<0.5	
14099	w										0.5		1.0			1.0	0.157	0.002	0.02	1.1	
14103	w	w			w				M		1.0		T			1.0	0.266	0.022	0.02	1.0	
14130					S	w					T	~ 1				1.0	0.555	0.008	0.39	3.3	
14144	M				M-S	w	M				T	~ 1				1.0	0.290	0.008	0.20	2.2	
14148	S				S		w					T				T	0.275	0.020	0.17	1.2	
14156					w							T		1.0		1.0	0.204	0.005	0.07	1.0	
14162										w							0.115	0.051	0.09	<0.5	
14169					M-S						1.0	1.0		<1		<2	0.386	0.016	0.18	3.0	
14232					w						0.5	1.0	0.5	0.5		2.5	0.325	0.011	0.21	1.8	
14250	w				w		w				0.5	1.0	0.5	0.5		2.5	0.300	0.038	0.33	2.0	
14260	w				w		w				1.0	0.5	0.5	T		2.0	0.505	0.016	0.9	3.1	
14276	w	w									2.0	T	0.5	1.0		3.5	0.136	0.003	<0.01	1.0	
14295	w	w			w		w				0.5	T	0.5	T		1.0	0.250	0.001	0.07	0.5	
14301					S						T		T	0.5		0.5	0.241	0.023	0.09	0.6	
14323	w				w						0.5	0.5	T	T		1.0	0.200	0.005	0.18	1.6	
14332	w				w		w				0.5	0.5	T	1.0		2.0	0.336	0.010	0.16	1.5	
14345	w				w						2.0	0.5	0.5	0.5		3.5	0.559	0.020	0.19	2.4	
14348	w				w				w		1.0	0.5	0.5	0.5		2.5	0.461	0.013	0.13	1.4	
14797	w				w						0.5	0.5		0.5		1.5	0.184	0.034	0.10	1.0	
14808	w				S						0.5	0.5		2.0		3.0	0.257	0.040	0.28	1.7	
14816	w				M		w				T	0.5	1.0	T		1.5	0.387	0.008	0.57	2.3	
14828	w				w						0.5	2.0		0.5		3.0	0.317	0.019	0.74	2.3	
14844	w										1.0	0.5	0.5	T		2.0	0.249	0.010	0.16	1.0	
14680	w				w					w	1.0	0.5		0.5		2.0	0.373	0.035	0.25	2.5	
14871	W	w			w		w				2.0	0.5		T		2.5	0.365	0.034	0.10	0.7	
14887	w	w					w				0.5		0.5			1.0	0.196	0.00	0.07	0.7	
14689	w			w	S		x				0.5		1.0	0.5		2.0	0.213	0.008	0.07	0.4	
14695	M-S				w		w			T	T		0.5			0.5	0.182	0.059	0.13	0.7	
14742	w				w			w		1	T			0.5		0.5	0.223	0.071	0.17	1.0	
14666	w	w			w						0.5		1.0	T		1.5	0.163	0.002	0.07	0.3	
14685	w				M						0.5		2.0	T		2.5	0.455	0.013	0.18	0.6	
14685B																					
14545	W-M						w				T		T			T	0.113	0.001	0.02	0.4	
14565	w				w		w				T					T	0.289	0.002	0.14	0.6	
14571	w				w		X				2.0		1.0	0.5		3.5	0.593	0.011	0.13	1.8	
14578	W-M				W-M		X				T		1.0			1.0	0.293	0.002	0.04	0.7	
14598	M									5	T		T			T	0.075	0.005	0.02	0.3	
14893	w									5							0.164	0.008	0.12	0.9	
14899	x						x										0.032	0.002	0.03	0.7	
14908	w				w						1.5	T				0.5	0.113	0.005	0.08	0.7	
14917	x		x		W-M							0.5				0.5	0.361	0.001	0.31	2.5	
14925	w	x			x		w			3	T					T	0.182	0.001	0.11	1.0	
14998	w										T	T	0.5	T		0.5	0.169	0.007	0.14	0.5	
15862	w	w			w						T	T		0.5		0.5	0.116	0.008	0.14	0.6	
15870	w				M		w				0.5	T	T	0.5		1.0	0.157	0.002	0.09	0.8	
15879	w	w			w		w				0.5	T		T		0.5	0.224	0.003	0.15	1.5	
15887	w	w				w		w			1.0	T		0.5		1.5	0.285	0.008	0.28	1.8	
15891	w				w		w				T	0.5		0.5		1.0	0.234	0.011	0.21	1.5	
15908	w										0.5	0.5		0.5		1.5	0.421	0.032	0.38	2.4	

Project:
lient:
Data:
Comments

Sample
Id.

15911
chatt Creek
Copper Fox Metals Inc.
Sample Information
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Alteration Minerals									Sulphides \%						Assay Data			
Ch Ep Chlorite	Bt Biotite	Se Sericite	$\begin{gathered} \text { K-spar } \end{gathered}$	$\underset{\text { Silicic }}{\mathrm{Si}}$		Cb	Tm Tourmaline	Mt Magnetite	Cp Chalcopyrite	$B n$ Bornite	Py Pyrite	Mb Molybdenite	Other	Total	Cu (\%)	Mo (\%)	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	Ag (g/t)
w			w						0.5	0.5		0.5		1.5	0.179	0.017	0.15	1.0
Mineral Legend:									Mineral Lege	nd:								Legend:
Ch	Chlorite				T	Trace			Ch	Chlorite								T
Ep	Epidote				W	weak			Ep	Epidote								w
Bt	Biotite				M	moderate			Bt	Biotite								M
Se	Sericite				S	strong			Se	Sericite								S
K	K-spar								K	K-spar								
Si	Silicic								Si	Silicic								
Hm	Hematite								Hm	Hematite								
Mt	Magnetite								Mt	Magnetite								
Tm	Tourmaline								Tm	Tourmaline								
Cp	Chalcopyrit								Cp	Chalcopyrit								
Bn	Bornite								Bn	Bornite								
Py	Pyrite								Py	Pyrite								
Mb	Molybdenit								Mb	Molybdenit								
Oth	See descri								Oth	See descri								
x	mineral pre	sent							x	mineral pre								

Sample

 replacement of hornblende. -From 18.6-19.8 m: fairly wide vein ($\sim 1 \mathrm{~cm}$) hosting notable pyrite and possible chalcopyrite.
Tourmaline Breccia. Unit is primarily porphyritic quartz-feldspar with primarily medium-grained plagioclase phenocrysts. "Wall-rock" is identical to the unit described above, and this unit is really the same lithology having undergone intense

 restricted almost exclusively to the hydrothermal veins.

 entire hole reflecting the variable degree of fracturing as a result of a violent fluid event. Photo 14 taken of box 39 showing typical stockwork texture ($82.0-84.1 \mathrm{~m}$).

 igneous breccia unit. (sample 05-JES-228 was also collected from this interval).

 possibly were filling fractures. These minor veins are typically $<2 \mathrm{~mm}$ wide.
Fine grained andesite. Weak brecciation and veining: epidote-carb-quartz, accessory pyrite, in part vuggy. Strong fracturing, low angle CA. Core rubbly. 1-2\% pyrite, disseminated, associated with fractures.
Andesite. Fine grained,similar to 15.8 m . Strongly fractured, moderately veined (epidote-carb-quartz). Locally developed as breccia.

 to 1% each pyrite, chalcopyrite.

 clasts.

 section.
 gouge and breccia along 30 cm length with a 20 cm section at 61.9 m of a low angle hematized vein breccia.

 rich zones.
Fault Zone - Tectonic Deformation and Alteration Zone. 87.2-96.0 m relict protolith of possible feldspar porphyry displaying variable K-alteration.

 quartz veins with 10% bornite along 10 cm length.

 painted along fracture planes trace chalcopyrite. Typically the fractures are at a low-medium angle and average 1 per meter
 spacing: Quartz veins, carbonate veins, talc(?)-chlorite veins. Total sulphides $2 \%: 0.5 \%$ each, bornite, chalcopyrite, pyrite in veins and adjacent to veins. Very fine chalcopyrite commonly replacing augite crystals.
 strongly variable, generally low abundance.
 strongly variable, generally low abundance. $96.0-106.7 \mathrm{~m}$ Alternating weak chlorite alteration and weak potassic alteration. Weak quartz-carbonate stockwork, $\sim 0.5 \%$ each chalcopyrite, bornite, pyrite, trace molybdenite,

 chlorite alteration. Low vein density. Rare 1 mm massive chalcopyrite veins and molybdenite coated slickensides, fractures.

Sample

 sulphides: 0.5-1\% of each chalcopyrite, pyrite, in veins, halos.
 appears to overprint the K-alteration, and may in part be epidote and serictic alteration. Areas of intense K-alteration completely obliterate protolith and are usually associated with stockwork arrray of mm-cm carbonate-quartz veins containing disseminated molybdenite and bornite. 10.8-12.8 m medium grey-green, fine grained with mm carbonate amygdules and mm low angle carbonate veinng. Possibly a late mafic dyke.
 weak pervasive chloritization. Low to medium angle carbonate-chlorite fractures averaging $6 / \mathrm{meter}$.
 weak pervasive chloritization. Low to medium angle carbonate-chlorite fractures averaging $6 /$ meter.

 carrying up to 7%, and forming a stockwork array with diffuse boundaries and does not appear to be vein associated. More of a late mineralization phase which may also be contributing to painted molybdenite on fracture planes Augite-Phyric Andesite. Fractured containing carbonate-chlorite filling and K -alteration envelopes on a mm-cm scale. Upper contact is fault controlled at high angle.
 Moderate pervasive chloritization along meter lengths, accompanied by intense chlorite hairline chlorite veinlets forming a crackle breccia. Overall 5% magnetite

 cm sections of fault gouge. $\mathrm{Mm}-\mathrm{cm}$ medium to high angle quartz-carbonate -chlorite veins some heavily mineralized with bornite.
 96.9-104.8 m; mm randomly oriented quartz-carbonate veins forming a weak stockwork array

Andesite. Grey, fine grain, masive, Incipient crackle brecciation developed by hairline to 3 mm randomly oriented carbonate veinlets. Rare 5 mm quartz-carbonate veins with bornite. Rare molybdenite painted fractures.
Augite-Feldspar-Phyric Andesite. Grey-green, massive with weak patchy K-alteration, rare mm epidote and darker blotchy areas of high magnetite. Mm randomly oriented quartz-carbonate veins with molybdenite and bornite, about $2 /$ meter

 sharp high angle contacts
Andesitic Tuff. Massive fine grain rock displaying weak low angle bedding and intercalated lithic tuff horizons. Weak epidote forming cm patches.
Feldspar-porphyry. Massive, competent. Pink colour, potassic alteration. Rock made up of very fine grained felsic groundmass and ~20\% white feldspar phenocrysts and $1-2 \%$ yellowish, boxy, altered phenocrysts showing relict cleavage
 veins, chlorite veins, pink carbonate-hematite veins. Accessory chalcopyrite, molybdenite in veins.

 hematite, chlorite. 29.1-29.4 m 3cm quartz-carbonate vein 45CA and 3 cm strongly molybdenite-coated vein and fault 75CA (i.e. subhorizontal).
Lapilli andesite and andesite, variously textured and altered. Unit divided into subdivisions 155.7-164.3 m ANLP Colour medium grey. Weak chloritic and potassic alteration. Low vein density, medium angle

 inclusions, up to 10% by volume.
 massive with a low vein density.

 vide pink halos. Sulphides. Trace to accessory pyrite, chalcopyrite, bornite in rare mm size patches, veins and disseminations. Rare 5 -10mm size chalcopyrite patches or discontinuous veins
 chalcopyrite as a) disseminations, mm patches; b) in thin veins

 85.3 m . Lower contact irregular: PPPL and ANPF are intertwined, fine grained andesite being broken up and intruded by medium grained plagioclase porphyry.

Project:
 chat Creek

lient:
Data:
Metals
Comments: Sampled by MDAG on Feb 7'07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps
 breccia of dark veins, low angle, carbonate-chlorite-veins. 102.1-102.4 m Several 1 mm high-molybdenite slickensides; at 108.5 m one 4 cm quartz vein with 2% molybdenite. Overall accessory chalcopyrite, bornite, molybdenite.

4578 medium angle. Several $1-5 \mathrm{~cm}$ carbonate-chlorite-veins and vein breccia with high sulphide abundance (several \% of coarse grained chalcopyrite, pyrite, molybdenite)
Plagioclase-phyric and augite-phyric andesite. Fine grained, massive, competent core. Fine grained, felsic, igneous grondmass hosting 20\% 0.2-2mm plagioclase phenocrysts; and 1-5\% dark, altered augite phenocrysts. Variable phenocryst

 green grey with minor medium brown grey portions. Strongly fractured, rusty, limonitic, in part with malachite coating
lagioclase-phyric and augite-phyric andesite. Fine grained, massive, competent core. Fine grained, felsic, igneous grondmass hosting 20\% 0.2-2mm plagioclase phenocrysts; and 1-5\% dark, altered augite phenocrysts. Variable phenocryst
 ANDS, fine veins. Scattered portions ($0.3-1.5 \mathrm{~m}$)
 Generally low vein density, but slightly higher than above: cm to dm spacing, medium angle.

 chalcopyrite. Quartz veins in part vuggy, open. Sharp contact 60CA

 sulphides abundanc: 84.7-85.0m; 87.8-88.4m; 91.1-91.4m; 99.4-100.0m; 100.6-101.8m; 110.9-112.8m; 114.3-114.9m; 117.3-118.0m; 120.7-121.9m; 127.7-128.3m; 134.1-137.1m
 $1 / 2 \mathrm{~cm}$ quartz-carbonate-chlorite veins forming dm sections of stockworks, variably mineralized with chalcopyrite, bornite and molybdenite. Occasional molybdenite painted fracture surfaces. Late mm unmineralized arbonate veins.
 stockworks. 75.4-91.4 m; high fracture and fault density at variable angles from low to high associated with carbonate-chlorite veins. Occasional molybdenite painted fracture surfaces.

 veins. Rare cm sections of highly comminuted rock forming bands at medium to high angle. Vuggy veins associated with carbonate phase. Cm sections of K-alteration, vein related.

 selvages manifest as grey tones overprinting an earlier pervasive alteration event of carbonate-sericite soaking the protolith. Fine mm scale bedding oriented at very low angle to core. Sharp high angle lower contact
 veins. 158.8 m ; very low angle carbonate-quartz vein brecciating host rock, displaying moderate K -alteration. Fault associated vein walls
Feldspar-Quartz Porphyry. Andedral to subhedral feldspar phenocrysts and anhedral quartz compacted into a massive rock with disseminated chalcopyrite.
Andesite. Green-grey. Pervasive carbonatization and chloritization, with cm sections of intense carbonatization. 10% angular to round oxide inclusions. Minor bornite and chalcopyrite associated with quartz-carbonate veins.

Project:
Client:
Comments:

Schaft Creek
Copper Fox Metals Inc.
ABA Data
pH of DI water used for paste pH read ???

Sample Id.	Paste pH	S (Total)	S (Sulphide)	S (Sulphide)	Carbonate Leach S (Sulphate)	HCI Leachable S (Sulphate)	S (Sulphate)	$\mathrm{S}\left(\mathrm{BaSO}_{4}\right)$	S (del ${ }_{\text {actual }}$)	S(del)	TAP	SAP	PAP
	Unity	(\% Leco)	(\% Leco)	(\% Calc)	(\%)	(\%)	(\% HCl/Carb)	(\%)	(\%)	(\%)	(kg CaCO 3 /t)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	($\left.\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}\right)$
Method	OA-ELE07	S-IR08	S-IR07	s-CALO6	s-GRA06	s-gra06a		Calculated	Calculated	Calculated	Calculated	Calculated	Calculated
MDL	0.1	0.01	0.01	0.01	0.01	0.01							
14018	7.6	0.8	0.69	0.795	0.02	0.005	0.005	0.027	0.078	0.078	25.0	24.0	19.7
14021	7.9	0.62	0.6	0.615	0.03	0.005	0.005	0.010	0.005	0.005	19.4	18.9	12.5
14036	7.9	1.47	1.39	1.465	0.02	0.005	0.005	0.013	0.062	0.062	45.9	45.4	37.8
14043	8.2	0.26	0.22	0.255	0.02	0.005	0.005	0.006	0.029	0.029	8.1	7.8	2.8
14060	8	1.31	0.62	0.6	0.74	0.71	0.71	0.008	-0.028	0.000	40.9	19.4	10.6
14067	8.4	0.4	0.41	0.395	0.01	0.005	0.005	0.008	-0.023	0.000	12.5	12.8	4.7
14076	8.2	0.77	0.76	0.765	0.01	0.005	0.005	0.010	-0.005	0.000	24.1	23.8	19.1
14083	8.2	1.46	1.35	1.455	0.03	0.005	0.005	0.017	0.088	0.088	45.6	44.9	40.4
14099	8.1	0.34	0.28	0.335	0.03	0.005	0.005	0.021	0.034	0.034	10.6	9.8	5.6
14103	8	0.69	0.25	0.27	0.45	0.42	0.42	0.006	0.014	0.014	21.6	8.2	0.2
14130	8.3	0.29	0.29	0.285	0.03	0.005	0.005	0.013	-0.018	0.000	9.1	9.1	0.2
14144	8	0.26	0.2	0.255	0.02	0.005	0.005	0.008	0.047	0.047	8.1	7.7	0.2
14148	7.6	0.14	0.04	0.135	0.02	0.005	0.005	0.015	0.080	0.080	4.4	3.8	0.2
14156	7.7	0.17	0.14	0.165	0.04	0.005	0.005	0.006	0.019	0.019	5.3	5.0	0.2
14162	7.9	0.13	0.12	0.125	0.02	0.005	0.005	0.013	-0.008	0.000	4.1	3.8	0.2
14169	8.1	0.3	0.29	0.295	0.01	0.005	0.005	0.002	0.003	0.003	9.4	9.2	0.2
14232	8.3	0.15	0.14	0.145	0.005	0.005	0.005	0.004	0.001	0.001	4.7	4.4	0.2
14250	8.3	0.19	0.19	0.185	0.01	0.005	0.005	0.004	-0.009	0.000	5.9	5.9	0.2
14260	8.4	0.34	0.34	0.335	0.01	0.005	0.005	0.004	-0.009	0.000	10.6	10.6	0.2
14276	8.5	0.17	0.14	0.165	0.01	0.005	0.005	0.025	0.000	0.000	5.3	4.4	0.2
14295	8.6	0.44	0.41	0.435	0.005	0.005	0.005	0.002	0.023	0.023	13.8	13.5	6.1
14301	8.6	0.34	0.32	0.335	0.01	0.005	0.005	0.006	0.009	0.009	10.6	10.3	2.1
14323	8.6	0.15	0.13	0.145	0.005	0.005	0.005	0.006	0.009	0.009	4.7	4.3	0.2
14332	8.6	0.26	0.26	0.255	0.01	0.005	0.005	0.004	-0.009	0.000	8.1	8.1	0.2
14345	8.4	0.52	0.52	0.515	0.005	0.005	0.005	0.004	-0.009	0.000	16.3	16.3	0.2
14348	8.3	0.44	0.45	0.435	0.01	0.005	0.005	0.004	-0.019	0.000	13.8	14.1	0.2
14797	8.1	0.08	0.05	0.075	0.005	0.005	0.005	0.004	0.021	0.021	2.5	2.2	0.2
14808	7.8	0.18	0.16	0.175	0.005	0.005	0.005	0.004	0.011	0.011	5.6	5.3	0.2
14816	7.6	0.46	0.46	0.45	0.005	0.01	0.01	0.004	-0.014	0.000	14.4	14.4	1.7
14828	7.6	0.13	0.1	0.125	0.02	0.005	0.005	0.017	0.008	0.008	4.1	3.4	0.2
14844	7.7	0.21	0.2	0.2	0.005	0.01	0.01	0.008	-0.008	0.000	6.6	6.3	0.2
14680	7.7	0.22	0.2	0.215	0.01	0.005	0.005	0.006	0.009	0.009	6.9	6.5	0.2
14871	7.6	0.37	0.32	0.365	0.02	0.005	0.005	0.002	0.043	0.043	11.6	11.3	0.2
14887	7.8	0.44	0.42	0.41	0.01	0.03	0.03	0.008	-0.018	0.000	13.8	13.1	6.8
14689	8.2	0.68	0.69	0.675	0.01	0.005	0.005	0.002	-0.017	0.000	21.3	21.6	15.0
14695	8.2	0.14	0.13	0.135	0.005	0.005	0.005	0.004	0.001	0.001	4.4	4.1	0.2
14742	8.2	0.19	0.19	0.185	0.005	0.005	0.005	0.004	-0.009	0.000	5.9	5.9	0.2
14666	8.1	0.32	0.31	0.315	0.01	0.005	0.005	0.008	-0.003	0.000	10.0	9.7	5.0
14685	8.1	1.79	1.8	1.785	0.01	0.005	0.005	0.010	-0.025	0.000	55.9	56.3	42.3
14685B	7.9	1.95	1.8	1.945	0.01	0.005	0.005	0.008	0.137	0.137	60.9	60.5	45.9
14545	7.8	0.19	0.13	0.185	0.01	0.005	0.005	0.021	0.034	0.034	5.9	5.1	1.2
14565	7.8	0.23	0.24	0.225	0.005	0.005	0.005	0.004	-0.019	0.000	7.2	7.5	0.2
14571	7.8	1.04	1.03	1.035	0.02	0.005	0.005	0.010	-0.005	0.000	32.5	32.2	14.7
14578	7.9	1.82	1.82	1.815	0.02	0.005	0.005	0.015	-0.020	0.000	56.9	56.9	47.4
14578B	7.9	1.93	1.91	1.925	0.03	0.005	0.005	0.019	-0.004	0.000	60.3	59.7	49.2
14598	8.1	0.13	0.13	0.125	0.01	0.005	0.005	0.004	-0.009	0.000	4.1	4.1	1.7
14893	8	0.11	0.08	0.07	0.005	0.04	0.04	0.010	-0.020	0.000	3.4	2.5	0.2
14899	8.1	0.02	0.02	0.015	0.005	0.005	0.005	0.008	-0.013	0.000	0.6	0.6	0.2
14908	8.1	0.08	0.07	0.075	0.005	0.005	0.005	0.017	-0.012	0.000	2.5	2.2	0.2
14917	8.2	0.19	0.16	0.185	0.005	0.005	0.005	0.019	0.006	0.006	5.9	5.2	0.2
14925	7.9	0.14	0.12	0.135	0.005	0.005	0.005	0.008	0.007	0.007	4.4	4.0	0.2
14998	7.8	0.13	0.12	0.125	0.005	0.005	0.005	0.006	-0.001	0.000	4.1	3.8	0.2
15862	7.9	0.08	0.03	0.075	0.005	0.005	0.005	0.006	0.039	0.039	2.5	2.1	0.2
15870	8	0.13	0.09	0.125	0.02	0.005	0.005	0.025	0.010	0.010	4.1	3.1	0.2
15879	8	0.12	0.09	0.115	0.02	0.005	0.005	0.019	0.006	0.006	3.8	3.0	0.2
15887	8	0.31	0.29	0.305	0.01	0.005	0.005	0.010	0.005	0.005	9.7	9.2	0.2

Project:
Client
Comments:

Sample

Id.

MDL
15891
15908
Maximum
Minimum
Mean
Standard Deviation
10 Percentile
25 Percen
75 Percent
90 Percentile

Interquartile Range (IQR) ${ }^{1}$

Variance
Soefficient of Variation (CoV)

Count
Total
NPR < 1.0 or NPR $=1.0$
$1.0<$ NPR < 2.0
NPR >2.0 or NPR $=2.0$
\% NPR < 1.0 or NPR = 1.0 of Total
$\% 1.0$ < NPR < 2.0 of Total
\% NPR > 2.0 or NPR =2.0 of Total

Schaft Creek
Copper Fox Metals Inc.
ABA Data
Sampled by MDAG on Feb 7 '07.
pH of DI water used for paste pH read ???

Paste pH	S (Total)	S (Sulphide)	S (Sulphide)	Carbonate Leach S (Sulphate)	HCI Leachable S (Sulphate)	S (Sulphate)	$\mathrm{S}\left(\mathrm{BaSO}_{4}\right)$	S(del ${ }_{\text {actual }}$)	S(del)	TAP	SAP	PAP
Unity	(\% Leco)	(\% Leco)	(\% Calc)	(\%)	(\%)	(\% HCI/Carb)	(\%)	(\%)	(\%)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	(kg CaCO 3 /t)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)
OA-ELE07	S-IR08	S-IR07	s-CAL06	S-GRA06	S-GRA06a		Calculated	Calculated	Calculated	Calculated	Calculated	Calculated
0.1	0.01	0.01	0.01	0.01	0.01							
7.8	0.14	0.09	0.135	0.02	0.005	0.005	0.031	0.014	0.014	4.4	3.2	0.2
7.8	0.22	0.2	0.215	0.02	0.005	0.005	0.006	0.009	0.009	6.9	6.5	0.2
7.9	0.09	0.07	0.085	0.01	0.005	0.005	0.010	0.005	0.005	2.8	2.3	0.2
8.6	1.95	1.91	1.94	0.74	0.71	0.71	0.031	0.14	0.14	60.9	60.5	49.2
7.6	0.02	0.02	0.015	0.005	0.005	0.005	0.0021	-0.028	0	0.62	0.62	0.16
8.04	0.45	0.41	0.43	0.033	0.025	0.025	0.01	0.0089	0.015	14.1	13.2	6.75
0.27	0.5	0.48	0.49	0.11	0.11	0.11	0.0068	0.031	0.027	15.7	15.3	13.5
7.7	0.12	0.078	0.11	0.005	0.005	0.005	0.0042	-0.019	0	3.69	2.9	0.16
7.8	0.14	0.13	0.14	0.005	0.005	0.005	0.0042	-0.0092	0	4.38	4.08	0.16
8	0.26	0.22	0.26	0.01	0.005	0.005	0.0084	0.0029	0.0029	8.12	7.71	0.16
8.2	0.45	0.44	0.44	0.02	0.005	0.005	0.013	0.014	0.014	14.1	13.8	5.33
8.4	1.34	1.09	1.12	0.03	0.006	0.006	0.019	0.044	0.044	41.9	34.7	23.4
0.4	0.31	0.3	0.3	0.015	0	0	0.0084	0.023	0.014	9.69	9.72	5.18
0.074	0.25	0.23	0.24	0.012	0.011	0.011	0.000047	0.00095	0.00071	246	234	182
0.37	1.93	2.08	2.11	5.72	5.79	5.79	1.24	1.97	2.67	1.93	2.09	2.25
0.034	1.11	1.18	1.15	3.34	4.2	4.2	0.68	3.47	1.83	1.11	1.16	2
59	59	59	59	59	59	59	59	59	59	59	59	59

Project:
Client:
Comments:

Sample Id.	NP	Available NP	Total C	Inorganic C	Inorganic CO_{2}	Excess C	Total CaNP	Inorganic CaNP	$\begin{aligned} & \text { (Ca) } \\ & \text { CaNP } \end{aligned}$	$\begin{aligned} & (\mathrm{Ca}+\mathrm{Mg}) \\ & \mathrm{CaNP} \end{aligned}$	TNNP	Adjusted TNNP	SNNP	Adjusted SNNP	PNNP	Adjusted PNNP
	$\left(\mathrm{kg} \mathrm{CaCO}_{3} \mathrm{tt}\right)$	($\mathrm{kg} \mathrm{CaCO}_{3}$ /t)	(\% Leco)	(\%)	(\%)	(\%)	($\mathrm{kg} \mathrm{CaCO}_{3}$ /t)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	($\mathrm{kg} \mathrm{CaCO}_{3}$ /t)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	$\left(\mathrm{kg} \mathrm{CaCO}_{3}{ }^{\text {t }}\right.$)				
Method	OA-VOL08	Calculated	C-IR07	C-GAS05	C-GAS05	Calculated										
MDL	1		0.01	0.05	0.2											
14018	42	32	0.4	0.38	1.4	0.02	33.3	31.8	44.5	88.5	17.0	7.0	18.0	8.0	22.3	12.3
14021	64	54	0.76	0.72	2.6	0.04	63.3	59.1	65.4	103.3	44.6	34.6	45.1	35.1	51.5	41.5
14036	49	39	0.52	0.48	1.8	0.04	43.3	40.9	45.9	83.4	3.1	-6.9	3.6	-6.4	11.2	1.2
14043	40	30	0.33	0.21	0.8	0.12	27.5	18.2	35.0	113.2	31.9	21.9	32.2	22.2	37.2	27.2
14060	41	31	0.29	0.28	1	0.01	24.2	22.7	78.4	164.9	0.1	-9.9	21.6	11.6	30.4	20.4
14067	49	39	0.41	0.35	1.3	0.06	34.2	29.6	64.7	175.0	36.5	26.5	36.2	26.2	44.3	34.3
14076	66	56	0.71	0.7	2.6	0.01	59.2	59.1	108.4	211.3	41.9	31.9	42.3	32.3	46.9	36.9
14083	74	64	0.85	0.83	3	0.02	70.8	68.2	100.6	173.5	28.4	18.4	29.1	19.1	33.6	23.6
14099	78	68	0.92	0.92	3.4	0	76.7	77.3	73.7	107.4	67.4	57.4	68.2	58.2	72.4	62.4
14103	85	75	0.9	0.87	3.2	0.03	75.0	72.8	73.2	126.3	63.4	53.4	76.8	66.8	84.8	74.8
14130	91	81	1.18	1.19	4.4	0	98.3	100.1	65.4	107.4	81.9	71.9	81.9	71.9	90.8	80.8
14144	116	106	1.43	1.37	5	0.06	119.2	113.7	93.6	141.4	107.9	97.9	108.3	98.3	115.8	105.8
14148	170	160	1.92	1.9	7	0.02	160.0	159.2	115.6	193.4	165.6	155.6	166.2	156.2	169.8	159.8
14156	73	63	0.88	0.86	3.2	0.02	73.3	72.8	61.7	94.2	67.7	57.7	68.0	58.0	72.8	62.8
14162	219	209	2.3	2.28	8.4	0.02	191.7	191.0	139.6	247.5	214.9	204.9	215.3	205.3	218.8	208.8
14169	64	54	0.7	0.69	2.5	0.01	58.3	56.9	57.9	74.4	54.6	44.6	54.8	44.8	63.8	53.8
14232	89	79	0.93	0.87	3.2	0.06	77.5	72.8	66.4	103.9	84.3	74.3	84.6	74.6	88.8	78.8
14250	118	108	1.14	1.12	4.1	0.02	95.0	93.2	101.6	179.0	112.1	102.1	112.1	102.1	117.8	107.8
14260	100	90	1.03	1.02	3.7	0.01	85.8	84.1	75.9	133.1	89.4	79.4	89.4	79.4	99.8	89.8
14276	47	37	0.43	0.25	0.9	0.18	35.8	20.5	107.6	175.2	41.7	31.7	42.6	32.6	46.8	36.8
14295	111	101	1.05	0.95	3.5	0.1	87.5	79.6	97.6	161.5	97.3	87.3	97.5	87.5	104.9	94.9
14301	136	126	1.56	1.54	5.7	0.02	130.0	129.6	91.4	142.5	125.4	115.4	125.7	115.7	133.9	123.9
14323	73	63	0.88	0.84	3.1	0.04	73.3	70.5	93.6	133.2	68.3	58.3	68.7	58.7	72.8	62.8
14332	95	85	0.84	0.74	2.7	0.1	70.0	61.4	84.7	127.5	86.9	76.9	86.9	76.9	94.8	84.8
14345	79	69	0.73	0.44	1.6	0.29	60.8	36.4	63.7	106.1	62.8	52.8	62.8	52.8	78.8	68.8
14348	59	49	0.61	0.6	2.2	0.01	50.8	50.0	53.7	103.5	45.3	35.3	44.9	34.9	58.8	48.8
14797	125	115	1.43	1.39	5.1	0.04	119.2	116.0	94.4	157.0	122.5	112.5	122.8	112.8	124.8	114.8
14808	172	162	2.23	2.21	8.1	0.02	185.8	184.2	121.6	188.7	166.4	156.4	166.7	156.7	171.8	161.8
14816	133	123	1.59	0.27	1	1.32	132.5	22.7	83.2	153.2	118.6	108.6	118.6	108.6	131.3	121.3
14828	143	133	1.7	1.69	6.2	0.01	141.7	141.0	108.4	183.3	138.9	128.9	139.6	129.6	142.8	132.8
14844	75	65	0.51	0.47	1.7	0.04	42.5	38.7	70.4	226.5	68.4	58.4	68.8	58.8	74.8	64.8
14680	102	92	1.06	1.05	3.8	0.01	88.3	86.4	103.4	171.3	95.1	85.1	95.5	85.5	101.8	91.8
14871	88	78	0.76	0.73	2.7	0.03	63.3	61.4	84.9	164.0	76.4	66.4	76.7	66.7	87.8	77.8
14887	119	109	1.2	1.18	4.3	0.02	100.0	97.8	129.4	231.1	105.3	95.3	105.9	95.9	112.2	102.2
14689	53	43	0.64	0.66	2.4	0	53.3	54.6	54.4	77.5	31.8	21.8	31.4	21.4	38.0	28.0
14695	114	104	1.35	1.3	4.8	0.05	112.5	109.2	99.4	161.6	109.6	99.6	109.9	99.9	113.8	103.8
14742	84	74	0.78	0.8	2.9	0	65.0	66.0	69.4	161.6	78.1	68.1	78.1	68.1	83.8	73.8
14666	94	84	0.77	0.74	2.7	0.03	64.2	61.4	98.1	188.7	84.0	74.0	84.3	74.3	89.0	79.0
14685	112	102	0.95	0.91	3.3	0.04	79.2	75.1	82.7	195.1	56.1	46.1	55.8	45.8	69.7	59.7
14685B	102	92	0.85	0.84	3.1	0.01	70.8	70.5	73.7	190.6	41.1	31.1	41.5	31.5	56.1	46.1
14545	77	67	0.63	0.59	2.2	0.04	52.5	50.0	95.4	153.0	71.1	61.1	71.9	61.9	75.8	65.8
14565	136	126	1.33	1.28	4.7	0.05	110.8	106.9	114.4	164.2	128.8	118.8	128.5	118.5	135.8	125.8
14571	76	66	0.76	0.75	2.8	0.01	63.3	63.7	64.7	112.9	43.5	33.5	43.8	33.8	61.3	51.3
14578	111	101	1.25	1.26	4.6	0	104.2	104.6	104.9	153.5	54.1	44.1	54.1	44.1	63.6	53.6
14578B	122	112	1.38	1.35	5	0.03	115.0	113.7	107.9	160.2	61.7	51.7	62.3	52.3	72.8	62.8
14598	77	67	0.59	0.57	2.1	0.02	49.2	47.8	83.7	174.6	72.9	62.9	72.9	62.9	75.3	65.3
14893	111	101	1.03	1.03	3.8	0	85.8	86.4	103.9	215.9	107.6	97.6	108.5	98.5	110.8	100.8
14899	81	71	0.68	0.65	2.4	0.03	56.7	54.6	88.4	258.4	80.4	70.4	80.4	70.4	80.8	70.8
14908	75	65	0.56	0.56	2.1	0	46.7	47.8	94.6	193.5	72.5	62.5	72.8	62.8	74.8	64.8
14917	66	56	0.55	0.54	2	0.01	45.8	45.5	57.9	133.3	60.1	50.1	60.8	50.8	65.8	55.8
14925	82	72	0.72	0.73	2.7	0	60.0	61.4	89.9	173.9	77.6	67.6	78.0	68.0	81.8	71.8
14998	103	93	1.05	1.04	3.8	0.01	87.5	86.4	99.4	166.5	98.9	88.9	99.3	89.3	102.8	92.8
15862	130	120	1.34	1.34	4.9	0	111.7	111.4	105.4	177.0	127.5	117.5	127.9	117.9	129.8	119.8
15870	151	141	1.72	1.72	6.3	0	143.3	143.3	115.9	188.7	146.9	136.9	147.9	137.9	150.8	140.8
15879	118	108	1.33	1.31	4.8	0.02	110.8	109.2	120.6	198.0	114.3	104.3	115.0	105.0	117.8	107.8
15887	95	85	0.94	0.91	3.3	0.03	78.3	75.1	102.9	168.4	85.3	75.3	85.8	75.8	94.8	84.8

Project:
Client
Data:
Comments:

Schaft Creek
Copper Fox Metals Inc.
ABA Data
Sampled by MDAG on Feb 7'07.

Sample Id.	NP	Available NP	Total C	Inorganic C	Inorganic CO_{2}	$\begin{aligned} & \text { Excess } \\ & \quad \text { C } \end{aligned}$	Total CaNP	Inorganic CaNP	(Ca) CaNP	$\begin{aligned} & (\mathrm{Ca}+\mathrm{Mg}) \\ & \text { CaNP } \end{aligned}$	TNNP	Adjusted TNNP	SNNP	Adjusted SNNP	PNNP	Adjusted PNNP
	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	($\mathrm{kg} \mathrm{CaCO}_{3}$ /t)	(\% Leco)	(\%)	(\%)	(\%)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	($\mathrm{kg} \mathrm{CaCO}_{3}$ /t)	$\left(\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}\right)$	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	($\mathrm{kg} \mathrm{CaCO}_{3}$ /t)	(kg CaCO33 ${ }^{\text {t }}$)	($\mathrm{kg} \mathrm{CaCO}_{3} / \mathrm{t}$)	($\mathrm{kg} \mathrm{CaCO}_{3}$ /t)	(kg CaCO3 ${ }_{3}$ t)
Method	OA-VOL08	Calculated	C-IR07	C-GAS05	C-GAS05	Calculated										
MDL	1		0.01	0.05	0.2											
15891	128	118	1.44	1.4	5.1	0.04	120.0	116.0	128.1	199.3	123.6	113.6	124.8	114.8	127.8	117.8
15908	121	111	1.2	1.2	4.4	0	100.0	100.1	112.9	189.0	114.1	104.1	114.5	104.5	120.8	110.8
15911	92	82	0.85	0.82	3	0.03	70.8	68.2	87.9	183.0	89.2	79.2	89.7	79.7	91.8	81.8
Maximum	219	209	2.3	2.28	8.4	1.32	192	191	140	258	215	205	215	205	219	209
Minimum	40	30	0.29	0.21	0.8	0	24.2	18.2	35	74.4	0.062	-9.94	3.61	-6.39	11.2	1.16
Mean	96.5	86.5	1	0.94	3.46	0.055	83.2	78.8	88.3	159	82.4	72.4	83.3	73.3	89.8	79.8
Standard Deviation	35.2	35.2	0.44	0.46	1.67	0.17	36.9	38.1	23.1	42.2	41.1	41.1	40.4	40.4	39.3	39.3
10 Percentile	52.2	42.2	0.52	0.43	1.56	0	43.2	35.5	57.9	103	35.6	25.6	35.4	25.4	43	33
25 Percentile	74.5	64.5	0.7	0.66	2.4	0.01	58.8	54.6	69.9	130	55.3	45.3	55.3	45.3	64.8	54.8
Median	92	82	0.9	0.86	3.2	0.02	75	72.8	91.4	164	78.1	68.1	78.1	68.1	84.8	74.8
75 Percentile	118	108	1.29	1.23	4.5	0.04	108	102	104	189	109	98.8	109	99.2	115	105
90 Percentile	136	126	1.57	1.43	5.22	0.068	131	119	116	202	128	118	128	118	134	124
Interquartile Range (IQR) ${ }^{1}$	43.5	43.5	0.59	0.57	2.1	0.03	48.8	47.8	34.5	58.4	53.4	53.4	53.9	53.9	50	50
Variance	1237	1237	0.2	0.21	2.8	0.03	1363	1450	535	1781	1686	1686	1630	1630	1544	1544
Skewness	0.84	0.84	0.9	0.85	0.86	6.9	0.9	0.86	-0.14	-0.079	0.57	0.57	0.66	0.66	0.64	0.64
Coefficient of Variation (CoV) ${ }^{2}$	0.36	0.41	0.44	0.48	0.48	3.16	0.44	0.48	0.26	0.27	0.5	0.57	0.48	0.55	0.44	0.49
Count	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59

Total 10 or NPR $=1.0$
$1.0<$ NPR < 2.0
NPR > 2.0 or NPR $=2.0$
$\%$ NPR <1.0 or NPR $=1.0$ of Tota
$\% 1.0<$ NPR < 2.0 of Total
\% NPR > 2.0 or NPR =2.0 of Total

[^0]Project:
Data:
Comments:

Schaft Creek
Copper Fox Metals Inc.
ABA Data
Sampled by MDAG on Feb 7'07.

SampleId.	Adjusted			Adjusted		Adjusted		Comparison of Fizz Rating \& NP
	TNPR	TNPR	SNPR	SNPR	PNPR	PNPR	Rating	
							Unity	
Method	Calculated	Calculated	Calculated	Calculated	Calculated	Calculated	OA-VoL08	
MDL								
14018	1.68	1.28	1.75	1.33	2.13	1.62	2	Disagree
14021	3.3	2.79	3.39	2.86	5.12	4.32	2	Agree
14036	1.07	0.849	1.08	0.859	1.29	1.03	2	Disagree
14043	4.92	3.69	5.15	3.86	14.2	10.7	2	Disagree
14060	1	0.757	2.12	1.6	3.86	2.92	2	Disagree
14067	3.92	3.12	3.82	3.04	10.4	8.29	2	Disagree
14076	2.74	2.33	2.78	2.36	3.45	2.93	2	Agree
14083	1.62	1.4	1.65	1.42	1.83	1.58	2	Agree
14099	7.34	6.4	7.95	6.93	13.8	12	2	Agree
14103	3.94	3.48	10.3	9.1	200	200		Disagree
14130	10	8.94	10	8.94	200	200	3	Disagree
14144	14.3	13	15.1	13.8	200	200	3	Agree
14148	38.9	36.6	45.2	42.5	200	200	3	Agree
14156	13.7	11.9	14.7	12.7	200	200	3	Disagree
14162	53.9	51.4	58.4	55.7	200	200	3	Agree
14169	6.83	5.76	6.99	5.9	200	200	3	Disagree
14232	19	16.9	20.2	18	200	200	3	Disagree
14250	19.9	18.2	19.9	18.2	200	200	3	Agree
14260	9.41	8.47	9.41	8.47	200	200	3	Agree
14276	8.85	6.96	10.7	8.46	200	200	2	Disagree
14295	8.07	7.35	8.2	7.47	18.2	16.6	3	Agree
14301	12.8	11.9	13.2	12.3	66.1	61.3	3	Agree
14323	15.6	13.4	16.8	14.5	200	200	2	Agree
14332	11.7	10.5	11.7	10.5	200	200	3	Disagree
14345	4.86	4.25	4.86	4.25	200	200	3	Disagree
14348	4.29	3.56	4.2	3.48	200	200	2	Agree
14797	50	46	56.5	52	200	200	3	Agree
14808	30.6	28.8	32.2	30.3	200	200	3	Agree
14816	9.25	8.56	9.25	8.56	80.4	74.4	3	Agree
14828	35.2	32.7	42.3	39.3	200	200		Agree
14844	11.4	9.9	12	10.4	200	200	3	Disagree
14680	14.8	13.4	15.6	14.1	200	200	3	Agree
14871	7.61	6.75	7.76	6.88	200	200		Disagree
14887	8.65	7.93	9.07	8.3	17.6	16.1	3	Agree
14689	2.49	2.02	2.46	1.99	3.54	2.87	2	Agree
14695	26.1	23.8	27.9	25.4	200	200	3	Agree
14742	14.1	12.5	14.1	12.5	200	200	3	Disagree
14666	9.4	8.4	9.7	8.67	18.7	16.7	3	Disagree
14685	2	1.82	1.99	1.81	2.65	2.41	3	Agree
14685B	1.67	1.51	1.69	1.52	2.22	2.01	3	Agree
14545	13	11.3	15	13.1	62.5	54.3	3	Disagree
14565	18.9	17.5	18.1	16.8	200	200	3	Agree
14571	2.34	2.03	2.36	2.05	5.16	4.49	3	Disagree
14578	1.95	1.78	1.95	1.78	2.34	2.13	3	Agree
14578B	2.02	1.86	2.04	1.88	2.48	2.27	3	Agree
14598	19	16.5	19	16.5	46.5	40.5	3	Disagree
14893	32.3	29.4	44.4	40.4	200	200	3	Agree
14899	130	114	130	114	200	200	3	Disagree
14908	30	26	34.3	29.7	200	200	3	Disagree
14917	11.1	9.43	12.7	10.8	200	200		Disagree
14925	18.7	16.5	20.7	18.2	200	200	3	Disagree
14998	25.4	22.9	27.5	24.8	200	200		Agree
15862	52	48	60.5	55.9	200	200	3	Agree
15870	37.2	34.7	48.4	45.2	200	200	3	Agree
15879	31.5	28.8	39.3	35.9	200	200		Agree
15887	9.81	8.77	10.3	9.23	200	200	3	Disagree

Project:
Client:
Comments:

Schaft Creek
Copper Fox Metals Inc.
ABA Data
Sampled by MDAG on Feb 7'07.
$\left.\begin{array}{cccccccc} & & & & & & & \begin{array}{c}\text { Comparison } \\ \text { of Fizz }\end{array} \\ \text { TNPR } & \begin{array}{c}\text { Adjusted } \\ \text { TNPR }\end{array} & \text { SNPR } & \begin{array}{c}\text { Adjusted } \\ \text { SNPR }\end{array} & \text { PNPR } & \begin{array}{c}\text { Adjusted } \\ \text { PNPR }\end{array} & \begin{array}{c}\text { Fizz } \\ \text { Rating } \\ \text { Unity }\end{array} & \begin{array}{c}\text { \& NP }\end{array} \\ \text { Calculated } & \text { OA-voLo8 }\end{array}\right]$
$\begin{array}{llllll}1.694915 & 3.389831 & 0 & 1.694915 & 0 & 0\end{array}$ $\begin{array}{llllllll}8.474576 & 10.16949 & 10.16949 & 13.55932 & 3.389831 & 5.084746\end{array}$ $89.8305186 .44068 \quad 89.8305184 .74576$ 96.61017 94.91525
${ }^{1}$ Interquartile Range $(\mathrm{IQR})=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
${ }^{2}$ Coefficient of Variation (CoV) = standard deviation divided by mean
NOTE: If data was reported as < detection limit half the detection limit is shown in italics and w
TNPR = NP / TAP
Note: If \% S(Total) <0.01 then TNPR $=200$
Note: If $\% \mathrm{~S}$ (Total) >0.01 and $\mathrm{NP}<=0$ then TNPR $=0.001$
Adjusted TNPR = UNP / TAP
Note: If $\%$ S(Total) <0.01 then Adjusted TNPR $=200$
Note: If $\%$ S(Total) >0.01 and UNP $<=0$ then Adjusted TNPR $=0.001$
SNPR $=$ NP $/$ SAP
Note: If \% S(Sulphide + del) <0.01 then SNPR $=200$
'Note: If $\%$ S(Sulphide + del) >0.01 and NP $<=0$ then SNPR $=0.001$
Adjusted SNPR = UNP / SAP
Note: If $\%$ S(Sulphide + del) <0.01 then Adjusted SNPR $=200$

PNPR = NP / PAP
Note: If \% Pyrite(Calc) <0.01 then PNPR $=200$
Note: If \% Pyrite(Calc) >0.01 and NP $<=0$ then PNPR $=0.001$
Adjusted PNPR = UNP / TAP
Note: If \% Pyrite(Calc) < 0.005 then Adjusted PNPR $=200$
Note: If $\%$ Pyrite(Calc) >0.005 and UNP $<=0$ then Adjusted PNPR $=0.001$

Project:
Client:
Data:
Comments:

Schaft Creek
Copper Fox Metals Inc.
ICP Metals Data
Sampled by MDAG on Feb 7'07.
ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm
Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

Sample Id.	Silver Ag (ppm)	Aluminum AI (ppm)	Arsenic As (ppm)	Barium Ba (ppm)	Beryllium Be (ppm)	Bismuth Bi (ppm)	Calcium Ca (ppm)	Cadmium Cd (ppm)	Cerium Ce (ppm)	Cobalt Co (ppm)	Chromium Cr (ppm)	$\begin{aligned} & \text { Cesium } \\ & \text { Cs } \\ & \text { (ppm) } \end{aligned}$	Copper Cu (ppm)	Iron Fe (ppm)	Gallium Ga (ppm)	Germanium Ge (ppm)
Method	ME-MS61															
MDL	0.01	100	0.2	10	0.05	0.01	100	0.02	0.01	0.1	1	0.05	0.2	100	0.05	0.05
Crustal Abundance: From	0.037	4200	1	0.4	1	0.007	5100	0.035	11.5	0.1	2	0.4	4	3800	4	0.2
Crustal Abundance: To	0.11	88000	13	2300	3	0.01	312400	0.42	345	74	170	6	250	86500	30	8
14018	0.88	80300	15.5	1120	1.3	0.93	17800	0.02	26.5	12	24	5.11	1290	25800	17.8	0.09
14021	1.22	77000	24.5	460	1.03	0.86	26200	0.11	23.2	9.7	21	5.86	1740	18100	16.4	0.08
14036	1.43	74100	30.2	500	1	1.01	18400	0.01	23.8	16.6	20	8.17	1920	25600	16.2	0.18
14043	0.7	75600	10.9	230	1.03	0.4	14000	0.01	13.3	14.6	31	2.39	1330	28500	16.05	0.06
14060	0.87	79600	14.3	380	0.99	0.24	31400	0.01	23.7	15.4	26	4.87	2610	35900	16.25	0.09
14067	1.85	85100	17.3	370	0.95	0.18	25900	0.03	21.5	19.9	36	2.64	2460	42900	17.6	0.1
14076	1.32	90000	15.1	410	0.8	0.62	43400	0.61	22.6	23.3	33	5.75	1300	54600	18.05	0.12
14083	0.98	88500	13.9	700	0.78	0.86	40300	0.5	22.8	24	49	7.97	1360	57800	17.8	0.12
14099	1.36	72400	2.2	770	0.95	1.51	29500	1.16	21.3	6.4	16	9.67	1210	22300	15.1	0.07
14103	1.06	76000	5.6	250	1.06	1.02	29300	0.03	25.9	7.8	20	3.59	2630	21200	16.95	0.09
14130	3.33	85100	2.1	440	0.62	2	26200	0.01	15.5	5	15	3.56	5530	18000	18.25	0.08
14144	2.52	93900	5.1	380	0.84	2.32	37500	0.01	20.7	7.7	5	5.29	3410	36100	20	0.1
14148	1.75	81100	2.6	560	0.9	1.98	46300	0.01	22.7	11	4	4.68	2880	38300	18.75	0.1
14156	1.76	76900	1.1	280	1.56	1.47	24700	0.01	23.3	5.4	25	2.49	2090	17400	20.5	0.07
14162	0.53	79700	2.1	510	0.92	2.13	55900	0.01	25.2	20.8	71	2.12	1020	42500	14.85	0.1
14169	2.84	76400	1.9	100	1.09	6.51	23200	0.01	7.62	4.2	16	1.19	3820	11800	18.85	0.05
14232	1.73	94400	3.5	140	0.95	0.84	26600	0.01	22.2	4.7	14	6.81	3370	26400	19.75	0.08
14250	1.66	94400	3.4	170	0.75	1.14	40700	0.01	24.1	8.3	12	4.65	3170	45800	21	0.11
14260	2.92	89500	2.6	170	0.73	6.57	30400	0.01	21.6	7.8	3	4.9	4880	42300	20	0.1
14276	0.8	98400	7.5	1000	0.78	0.78	43100	0.13	21.2	8.8	17	2.68	1490	38900	20.3	0.08
14295	0.51	89700	3.7	110	0.7	0.2	39100	0.02	18.6	18.6	12	4.81	2330	47300	18.95	0.1
14301	0.39	87600	3.8	300	0.86	0.4	36600	0.01	20.1	10.4	15	3.85	2440	31300	18.05	0.09
14323	1.33	93600	3.3	280	0.92	0.74	37500	0.01	20.5	8.8	3	6.79	2250	38700	20.5	0.09
14332	1.36	96200	2.2	210	0.88	0.62	33900	0.01	23.9	7.7	3	5.41	3470	35500	20.8	0.09
14345	2.38	97300	2.1	190	0.9	2.05	25500	0.01	26.4	7.2	11	4.35	6070	22100	20.4	0.09
14348	1	94300	2.3	150	0.82	1.13	21500	0.01	24.6	8.4	11	4.61	4900	34700	20.1	0.09
14797	1.03	86900	2.5	150	0.92	0.43	37800	0.01	15.4	10.5	6	6.37	1750	42700	19.85	0.11
14808	2.27	81300	0.1	170	1.58	1.73	48700	0.01	21.5	9.2	6	5.38	2640	37600	18.75	0.33
14816	2.15	82900	1.8	140	0.84	2.94	33300	0.01	18.3	10.1	5	5.98	3970	41300	21.4	0.12
14828	2.42	89200	2.4	710	0.94	2.48	43400	0.01	23.8	10.3	4	5.11	3260	41200	20.9	0.13
14844	1.35	91800	3.7	300	0.67	1.02	28200	0.01	15.75	19	39	8.05	2990	51800	22	0.12
14680	3.36	90500	1.8	300	2.27	5.64	41400	0.01	27.1	11	5	10.45	3950	41400	21	0.28
14871	1.02	96200	2.3	120	0.74	1.28	34000	0.01	18.75	12.7	10	5.3	3880	46100	21.4	0.11
14887	0.41	96900	2.9	340	0.68	0.28	51800	0.01	22.1	16.2	20	3.33	1990	53100	20.4	0.12
14689	0.38	83800	1.4	120	1.01	0.44	21800	0.01	29.6	5.9	10	2.38	2020	14800	18.4	0.07
14695	0.71	97000	0.1	170	0.89	1.19	39800	0.01	26.4	9.6	6	7.95	1500	39900	21.4	0.24
14742	1.3	90600	0.5	120	1.35	4.71	27800	0.01	17.2	10.4	24	2.84	2100	33500	20.5	0.33
14666	0.37	92100	4.8	330	0.78	0.13	39300	0.01	19.3	21.9	21	4.19	1440	53900	21.9	0.1
14685	1.13	85900	6.6	380	1.04	0.51	33100	0.01	22.1	35.4	5	5.87	4330	63900	22.7	0.1
14685B	1	83100	5.9	310	1.1	0.48	29500	0.01	19.45	30.6	7	5.85	4570	59700	21.8	0.11
14545	0.26	94700	3.4	860	0.8	0.08	38200	0.01	24.1	10.3	16	4.7	1210	41700	21.2	0.1
14565	0.47	88300	3	220	0.7	0.39	45800	0.01	22.7	8.7	11	5.46	2670	37200	18.65	0.09
14571	1.92	82200	3.2	430	0.99	1.04	25900	0.01	20.9	12.9	7	5.37	5450	26900	18.05	0.08
14578	0.65	86800	5.2	640	1.16	0.33	42000	0.01	23.9	15.8	9	6.35	2980	41600	19.4	0.1
14578B	0.74	82400	4.5	760	1	0.31	43200	0.01	22.8	15.7	10	6.22	3280	39200	20.4	0.11
14598	0.39	92500	2.7	220	0.85	1.23	33500	0.01	16.15	15.9	3	4.8	703	46600	22.6	0.09
14893	0.67	92000	4.5	490	0.81	0.56	41600	0.01	18.75	18.3	44	5.23	1630	53400	22.6	0.11
14899	0.25	97000	8.1	330	0.78	0.18	35400	0.01	15.8	22.6	43	2.68	409	56900	24.2	0.12
14908	0.39	95800	6.2	690	0.69	0.29	37900	0.01	19.6	15	39	2.29	1140	53200	23.3	0.11
14917	2.53	85300	1.7	740	1.19	1.43	23200	0.01	25.1	9.4	16	2.27	3800	24200	23.5	0.1
14925	0.71	87800	3.5	390	0.71	0.58	36000	0.01	17.85	13.9	30	4.58	1610	46200	22.7	0.12
14998	0.72	90100	3.4	280	0.63	0.53	39800	0.01	20.1	12.8	6	5.88	1800	43600	21.6	0.12
15862	0.74	87200	2.2	290	0.66	0.49	42200	0.01	19.1	12.2	4	5.75	1180	41600	21	0.1
15870	1.17	81000	2.6	1030	0.46	0.54	46400	0.01	20.6	10.3	27	4.53	2020	39200	20.4	0.12

Project:
Data:
Comments:

Sample	Silver	Aluminum	Arsenic	Barium	Beryllium	Bismuth	Calcium	Cadmium	Cerium	Cobalt	Chromium	Cesium	Copper	Iron	Gallium	Germanium
1 l .	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe	Ga	Ge
	(ppm)															
Method	ME-MS61															
MDL	0.01	100	0.2	10	0.05	0.01	100	0.02	0.01	0.1	1	0.05	0.2	100	0.05	0.05
Crustal Abundance: From	0.037	4200	1	0.4	1	0.007	5100	0.035	11.5	0.1	2	0.4	4	3800	4	0.2
Crustal Abundance: To	0.11	88000	13	2300	3	0.01	312400	0.42	345	74	170	6	250	86500	30	8
15879	1.4	90600	2.4	760	0.67	0.51	48300	0.01	19.85	13.6	29	4.83	2150	51500	21.7	0.12
15887	2.42	87200	2	440	0.75	1.14	41200	0.01	15.05	14	25	5.1	5070	34600	21.4	0.12
15891	2.15	89500	1.7	1250	0.66	0.98	51300	0.01	17.35	9.7	22	5.24	2450	38500	21.4	0.11
15908	2.82	87100	1.5	260	0.77	1.3	45200	0.01	17.95	12.7	24	5.96	4260	34500	20.8	0.1
15911	1.2	88600	2.1	410	0.7	0.56	35200	0.01	19.5	14.8	33	6.92	1820	46500	22.2	0.1
Maximum	3.36	98400	30.2	1250	2.27	6.57	55900	1.16	29.6	35.4	71	10.4	6070	63900	24.2	0.33
Minimum	0.25	72400	0.1	100	0.46	0.08	14000	0.01	7.62	4.2	3	1.19	409	11800	14.8	0.05
Mean	1.34	87481	5.08	412	0.91	1.26	35375	0.053	21	13	18.3	5.04	2661	38607	20	0.11
Standard Deviation	0.82	6660	5.75	273	0.28	1.42	9259	0.18	3.85	6.16	13.8	1.85	1333	11942	2.14	0.054
10 Percentile	0.39	76980	1.66	140	0.67	0.27	23200	0.01	15.8	7.04	4	2.47	1210	21920	16.8	0.08
25 Percentile	0.71	82650	2.1	215	0.74	0.46	28000	0.01	18.8	8.8	6.5	4.02	1620	32400	18.5	0.09
Median	1.17	88300	3	330	0.86	0.86	36600	0.01	21.3	11	16	5.11	2440	39200	20.4	0.1
75 Percentile	1.81	92300	5.15	505	1	1.36	41800	0.01	23.8	15.8	25	5.88	3440	46150	21.4	0.12
90 Percentile	2.52	96200	14	762	1.17	2.35	46320	0.03	25.3	21	36.6	7.13	4632	53500	22.6	0.12
Interquartile Range (IQR) ${ }^{1}$	1.1	9650	3.05	290	0.26	0.9	13800	0	5	6.95	18.5	1.85	1820	13750	2.88	0.03
Variance	0.68	44356026	33	74305	0.078	2.01	85737446	0.032	14.8	38	191	3.44	1775728	142622022	4.57	0.0029
Skewness	0.77	-0.38	2.61	1.23	2.42	2.57	-0.14	5.11	-0.65	1.37	1.33	0.42	0.68	-0.24	-0.49	2.96
Coefficient of Variation (CoV) ${ }^{2}$	0.61	0.076	1.13	0.66	0.31	1.13	0.26	3.38	0.18	0.47	0.76	0.37	0.5	0.31	0.11	0.47
Count	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59

\square NOTE: if data is boxed, then data is 3 times the maximum crustal abundance.
${ }^{1}$ Interquartile Range $(\mathrm{IQR})=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
${ }^{2}$ Coefficient of Variation (CoV) = standard deviation divided by mean
NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.
NOTE: If data was reported as > detection limit the detection limit is shown in bold and was used in subsequent calculations.

Project:
Client:
Comments:

Sample
Id.
Method
MDL
Crustal Abundance: From
Crustal Abundance: To
14018
14021
14036
14043
14060
14067
14076
14083
14099
14103
14130
14144
14148
14156
14162
14169
14232
14250
14260
14276
14295
14301
14323
14332
14345
14348
14797
14808
14816
14828
14844
14680
14871
14887
14689
14695
14742
14666
14685
$14685 B$
14545
14565
14571
14578
$14578 B$
14598
14893
14899
14908
14917
14925
14998
15862
15870

Schaft Creek
Copper Fox Metals Inc.
ICP Metals Data
Sampled by MDAG on Feb 7'07.
Rare earth elements may not be totally soluble in MS61 method
ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm
Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

Hafnium Hf	Mercury Hg	Indium In	$\begin{gathered} \text { Potassium } \\ K \end{gathered}$	Lanthanum La	Lithium Li	Magnesium Mg	Manganese Mn	Molybdenum Mo	Sodium Na	Niobium Nb	Nickel Ni	Phosphorus P	Lead Pb	Rubidium Rb	$\begin{aligned} & \text { Rhenium } \\ & \mathrm{Re} \end{aligned}$
(ppm)															
ME-MS61	Hg-CV41	ME-MS61													
0.1	0.01	0.005	100	0.5	0.2	100	5	0.05	100	0.1	0.2	10	0.5	0.1	0.002
0.3	0.03	0.01	40	10	5	1600	390	0.2	400	0.3	2	170	1	0.2	NA
11	0.4	0.26	48000	115	66	47000	6700	27	40400	35	225	1500	80	170	NA
1.9	0.01	0.065	24500	12.7	8.7	10700	476	36.3	31600	4.2	9.6	660	52	89.4	0.036
1.7	0.005	0.082	22200	11.9	9.6	9200	629	348	23800	3.4	6.9	570	91.3	129.5	0.178
1.7	0.005	0.087	21300	11.9	9.5	9100	475	658	24700	3	8.3	570	19.7	119.5	0.312
1.4	0.005	0.041	10300	6.8	17.7	19000	446	324	32900	2.6	11.6	570	4.7	61.3	0.146
2.2	0.005	0.053	12000	11.2	19.5	21000	422	220	30500	3.3	15.3	1290	5.8	67.9	0.133
1.6	0.005	0.046	11200	10.1	26	26800	779	90.6	35100	2.7	16.2	1120	40.8	53.8	0.116
1.9	0.01	0.06	14300	10.7	22.4	25000	1585	56.2	23000	2.6	15	1070	236	75.1	0.136
1.4	0.01	0.076	30900	10.6	19.2	17700	1365	13.2	13600	2.5	17.2	1070	20	165	0.033
1.4	0.02	0.04	32000	9.9	5.3	8200	1090	6.9	5400	3.2	6.5	470	23.4	177.5	0.002
1.9	0.01	0.072	18100	12.3	7.8	12900	686	231	25100	2.9	10.2	620	8.2	93.2	0.185
0.7	0.02	0.026	18100	6.3	3.5	10200	191	80.8	38300	3.8	4.1	1390	3.8	54.2	0.073
0.7	0.01	0.05	15600	8.7	8.3	11600	451	72.5	34900	5.1	4.2	1830	4.7	47.1	0.049
1	0.02	0.042	20600	10.6	13.3	18900	429	257	13800	4.2	5.5	1220	3.2	61.2	0.221
1.6	0.005	0.027	12200	10.8	7	7900	339	77.8	37400	4.5	8.1	500	2.5	37.7	0.02
1.9	0.005	0.062	16000	11.8	17.6	26200	853	479	19300	4.5	35	980	5.3	47.1	0.145
1.4	0.02	0.036	9700	2.8	3.5	4000	278	176.5	47600	3.9	5.9	550	7.1	28.5	0.043
0.9	0.01	0.05	16800	9.7	7.4	9100	189	97.4	42800	4.5	2.7	1430	2.5	55.2	0.09
0.8	0.01	0.053	14600	11	15	18800	436	374	38300	4.3	2.5	1450	3.3	57.8	0.346
0.8	0.01	0.09	15900	9.7	7.2	13900	275	173	38600	4	2.8	1390	3.8	61.3	0.145
1.2	0.005	0.073	7600	9.1	11.6	16400	1085	22.8	40800	4.4	1.7	1440	6.7	20.9	0.008
0.9	0.02	0.054	16000	8.3	12.1	15500	436	11.9	33600	4.1	4.5	1360	4.4	63.7	0.002
1.4	0.01	0.058	19200	8.5	10.3	12400	517	215	27300	4.4	4.2	1380	3.6	56.5	0.137
1	0.005	0.037	18200	8.9	7.5	9600	386	67.7	35000	4.6	2.2	1410	2.7	48.2	0.05
1.1	0.01	0.055	20200	10.7	8.2	10400	281	102	32400	4.6	2.6	1470	2.8	64.7	0.072
0.8	0.005	0.053	24000	12.1	6.9	10300	150	250	36900	3.9	3.1	1380	2.3	80.6	0.15
0.9	0.01	0.053	18700	10.9	11.3	12100	191	170.5	38200	4.4	3	1520	2.3	65.9	0.135
0.9	0.01	0.029	19500	6.4	16	15200	559	212	26700	4.6	4.2	1330	3.3	54.7	0.147
1.2	0.06	0.037	20800	10.1	11.8	16300	493	580	20000	,	4.6	1080	7.6	83.3	0.936
0.8	0.02	0.068	20900	7.8	9.4	17000	438	52.3	26700	4.9	5.2	1230	2.8	59.1	0.052
0.8	0.03	0.032	17500	10.7	10.2	18200	507	182.5	32900	5	3.9	1280	5.9	65.3	0.119
1.1	0.02	0.032	16900	6.9	26.3	37900	319	128	24600	5.9	23.4	1290	2.7	63.3	0.143
1.8	0.02	0.035	16000	12.7	18.9	16500	493	500	34600	5.1	5.5	1300	5.4	84.9	0.326
1	0.01	0.042	12300	8.7	12.3	19200	374	240	44300	5.9	7.3	1230	2.7	65.6	0.109
1.1	0.01	0.042	11700	10.7	13	24700	613	8.29	35400	5.8	10.6	1200	2.8	51.1	0.003
1.4	0.005	0.029	16400	14.4	3.3	5600	301	84.7	34300	2.7	6.4	540	1.6	42.9	0.065
1.8	0.01	0.0025	22100	12.5	5.8	15100	611	641	30000	4.7	7.6	1400	3.4	83.4	0.499
1.4	0.01	0.019	12800	8.2	11.2	22400	401	661	43600	5.4	16.2	1220	20.6	62	0.436
1	0.005	0.048	12900	8.7	27.7	22000	543	28.4	35800	7	15.5	1250	2.2	42.3	0.04
1	0.04	0.058	12100	9.5	25.9	27300	364	120	32000	4.5	9.1	1530	2.8	47.7	0.113
1.4	0.04	0.056	13200	8.7	24.9	28400	327	77.4	33900	4.3	7.9	1530	2.4	67.7	0.088
1.5	0.005	0.055	11800	11	7.9	14000	273	14.05	35000	5.5	1.3	1330	2.4	52.5	0.004
1.2	0.005	0.069	18600	10.1	9.9	12100	529	12.65	29900	5.1	1.6	1270	2.3	67.6	0.011
1.4	0.01	0.058	14200	9.7	6.4	11700	230	101	32200	4.2	4.7	1030	3.6	53.4	0.062
1.6	0.01	0.027	15800	10.1	7.6	11800	337	27	31500	5	6.7	1550	2.8	53.5	0.033
2.2	0.01	0.028	15800	9.4	8.2	12700	345	31.3	32900	4.9	5.8	1470	2.4	58.1	0.04
0.7	0.005	0.022	12400	6.5	14.1	22100	631	53.3	31400	5.9	3.9	1540	2.3	26.5	0.071
1.5	0.01	0.034	10200	9	16.7	27200	493	101	36600	6.5	19.8	1260	3.1	52.4	0.033
0.9	0.01	0.024	7700	7	26.2	41300	546	19.2	34100	6.1	22.1	1260	3.3	18.9	0.014
1.4	0.005	0.042	13700	9	17	24000	527	102.5	44700	7.1	18.7	1310	2.8	41.1	0.082
2.3	0.01	0.023	16100	11	21.2	18300	379	17.15	47300	4.6	8.4	1100	3.8	50.4	0.01
1.2	0.01	0.045	15400	7.8	16.2	20400	408	27.5	35600	6.8	16	1230	2.5	55	0.009
0.9	0.01	0.036	12500	8.6	14.9	16300	452	65.2	41400	4.8	2.2	1440	2.5	42.7	0.035
0.7	0.01	0.027	14800	8.2	12.4	17400	584	74	34400	5	4.4	1260	2.4	40.8	0.042
1	0.005	0.035	18500	9.9	7.4	17700	539	17.9	26200	5.6	12.4	1120	3.2	70.5	0.01

Project:
Client:
Comments:

Sample	Hafnium	Mercury	Indium	Potassium	Lanthanum	Lithium	Magnesium	Manganese	Molybdenum	Sodium	Niobium	Nickel	Phosphorus	Lead	Rubidium	Rhenium
Id.	Hf	Hg	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	Pb	Rb	Re
	(ppm)															
Method	ME-MS61	Hg-CV41	ME-MS61													
MDL	0.1	0.01	0.005	100	0.5	0.2	100	5	0.05	100	0.1	0.2	10	0.5	0.1	0.002
Crustal Abundance: From	0.3	0.03	0.01	40	10	5	1600	390	0.2	400	0.3	2	170	1	0.2	NA
Crustal Abundance: To	11	0.4	0.26	48000	115	66	47000	6700	27	40400	35	225	1500	80	170	NA
15879	1.2	0.01	0.035	14900	9.4	10.4	18800	554	20	32900	6.9	15.3	1280	3.8	56.7	0.018
15887	1	0.01	0.044	11900	6.7	11.3	15900	395	165.5	39300	6.5	11.6	1090	3.5	39.8	0.213
15891	0.9	0.01	0.021	17200	7.7	10.8	17300	558	104	34900	5.4	10.8	1120	3.6	60.8	0.08
15908	1	0.03	0.039	18000	8.4	10.9	18500	433	311	29000	6.1	12.6	1130	2.8	69.3	0.226
15911	1	0.02	0.027	13800	9.2	11.6	23100	402	154	32500	6.6	17.7	1250	2.5	69.5	0.135
Maximum	2.3	0.06	0.09	32000	14.4	27.7	41300	1585	661	47600	7.1	35	1830	236	178	0.94
Minimum	0.7	0.005	0.0025	7600	2.8	3.3	4000	150	6.9	5400	2.5	1.3	470	1.6	18.9	0.002
Mean	1.26	0.013	0.045	16247	9.54	12.8	17175	498	162	32500	4.71	9.02	1189	11.6	63.3	0.12
Standard Deviation	0.42	0.01	0.018	4772	1.99	6.3	7171	260	173	8004	1.19	6.66	309	32.9	28.3	0.15
10 Percentile	0.8	0.005	0.026	11600	6.88	6.8	9180	275	16.5	23640	2.98	2.58	570	2.38	40.6	0.0098
25 Percentile	0.9	0.005	0.032	12650	8.45	8.05	11950	354	33.8	29450	4.05	4.2	1095	2.6	49.3	0.034
Median	1.2	0.01	0.042	15900	9.7	11.3	16500	446	101	33600	4.6	6.9	1260	3.3	58.1	0.08
75 Percentile	1.5	0.01	0.056	18550	10.8	16.4	20700	550	218	36750	5.45	12.5	1390	5.35	67.8	0.14
90 Percentile	1.9	0.02	0.07	21460	11.9	22.9	26320	705	395	41680	6.5	17.3	1480	20.1	85.8	0.24
Interquartile Range (IQR) ${ }^{1}$	0.6	0.005	0.024	5900	2.3	8.4	8750	196	184	7300	1.4	8.3	295	2.75	18.5	0.11
Variance	0.17	0.0001	0.00033	22775295	3.98	39.7	51419515	67837	29834	64062759	1.41	44.3	95722	1086	802	0.023
Skewness	0.68	2.59	0.42	1.01	-0.45	0.84	0.98	2.21	1.63	-0.9	0.088	1.43	-1	5.92	2.14	3.26
Coefficient of Variation (CoV) ${ }^{2}$	0.33	0.81	0.4	0.29	0.21	0.49	0.42	0.52	1.07	0.25	0.25	0.74	0.26	2.84	0.45	1.24
Count	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59

Schaft Creek
Copper Fox Metals Inc.
ICP Metals Data
Sampled by MDAG on Feb 7'07.
Rare earth elements may not be totally soluble in MS61 method.
ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm
Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.
3.36 NOTE: if data is boxed, then data is 3 times the maximum crustal abundance.
${ }^{1}$ Interquartile Range (IQR) $=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
${ }^{2}$ Coefficient of Variation (CoV) $=$ standard deviation divided by mean
NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.
NOTE: If data was reported as > detection limit the detection limit is shown in bold and was used in subsequent calculations.

Project:
Client:
Comments:

Schaft Creek
Copper Fox Metals Inc.
ICP Metals Data
Sampled by MDAG on Feb 7'07.
Rare earth elements may not be totally soluble in MS61 method
ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm
Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

Sample	Sulphur	Antimony	Scandium	Selenium	Tin	Strontium	Tantalum	Tellurium	Thorium	Titanium	Thallium	Uranium	Vanadium	Tungsten	Yttrium	Zinc	Zirconium
Id.	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	TI	U	V	W	Y	Zn	Zr
	(ppm)																
Method	ME-MS61																
MDL	100	0.05	1	1	0.2	0.2	0.05	0.05	0.2	50	0.02	0.1	1	0.1	0.1	2	0.5
Crustal Abundance: From	240	0.1	NA	0.05	0.5	1	0.8	NA	0.004	300	0.16	0.45	20	0.6	20	16	19
Crustal Abundance: To	2400	1.5	NA	0.6	6	2000	4.2	NA	17	13800	2.3	3.7	250	2.2	90	165	500
14018	8800	3.69	7.9	2	1.1	428	0.32	0.26	3.7	2400	0.6	2.3	70	12.8	10.8	41	50.3
14021	7000	6.36	7.7	2	1.2	173	0.28	0.09	3.3	2080	0.75	1.9	65	18.4	12.5	56	45.5
14036	16000	7.99	7.3	4	1.5	235	0.21	0.72	3.3	1970	0.71	1.9	67	25	10.2	41	41.3
14043	2800	4.34	10.2	2	1	276	0.22	0.07	2.3	2190	0.42	1.4	102	27	7.6	45	40.3
14060	14800	2.49	16.5	3	1	423	0.22	0.06	2.4	4100	0.44	1.6	155	30.1	17.1	27	66.3
14067	4300	3.8	21.1	4	1.1	410	0.17	0.06	1.5	4170	0.38	1.1	182	12.1	17.5	71	49.5
14076	9500	5.5	24.4	2	1.2	365	0.18	0.18	1.9	4540	0.47	1	197	6.5	19.9	163	55.8
14083	16000	5.68	24.7	2	1.6	232	0.16	0.27	1.7	4480	0.95	0.9	204	10.3	19.5	127	40.6
14099	3600	3.71	5	1	0.6	88	0.24	0.05	2.7	1670	1.04	1.9	47	17.4	8.2	205	33.7
14103	7700	4.72	10.2	3	1.1	197.5	0.24	0.05	3	2220	0.67	1.8	119	20.2	10.4	67	51.2
14130	3200	1.25	6.3	5	0.9	288	0.22	0.51	0.8	2800	0.28	0.3	73	5.6	12.7	26	19.7
14144	2800	2.5	6.8	4	0.9	343	0.29	0.54	0.9	3760	0.27	0.5	91	4	16.2	46	19.6
14148	1400	2.35	11.4	3	1.2	223	0.25	0.27	0.8	3780	0.31	0.9	146	4.9	15.6	40	28.9
14156	1700	1.66	5.6	3	1.1	259	0.33	0.09	3.1	1900	0.17	1.9	47	10.5	8.5	35	39.3
14162	1500	2.42	21.4	2	1.2	239	0.28	0.17	1.8	4270	0.22	1.1	159	5.2	15.7	67	59.6
14169	3200	1.63	5.9	3	1.9	207	0.3	0.46	2.8	1960	0.15	1.7	65	13	6.3	24	36.9
14232	1600	3.64	6.8	3	1.1	345	0.27	0.23	0.9	3290	0.3	0.5	87	3.5	14.5	21	23.6
14250	2000	3.46	12.1	3	1.4	424	0.25	0.29	0.8	4350	0.28	0.5	236	3.3	16.9	38	18.3
14260	3700	2.5	11.4	6	1.6	402	0.23	0.85	0.7	4050	0.31	0.5	144	4.5	14.3	36	17.6
14276	1700	10.95	7.2	2	1	798	0.28	0.07	1	4100	0.14	0.6	112	4.9	17.8	112	29.9
14295	4900	3.4	14.1	2	1.8	336	0.25	0.08	0.7	4240	0.38	0.7	154	15.6	14.8	34	23.5
14301	3500	2.57	11	3	1.6	209	0.26	0.13	1	3620	0.3	0.6	117	10.5	14.7	38	47.1
14323	1500	2.29	6.5	2	1.3	391	0.27	0.17	0.8	3310	0.31	0.4	94	3.3	15.5	29	29.3
14332	2700	1.94	6.9	2	1.4	355	0.27	0.19	0.9	3260	0.32	0.5	103	3.5	16.6	31	32.2
14345	5600	2.33	7.3	5	3.8	274	0.24	0.29	0.9	2970	0.41	0.6	101	14.5	14.8	27	20
14348	4800	2.53	6.8	3	1.7	276	0.27	0.19	0.9	3190	0.4	0.5	74	5.8	13.9	40	22.1
14797	700	4.83	11	3	1.2	234	0.28	0.15	0.6	4150	0.38	0.3	152	5.7	12	42	20.9
14808	1900	5.13	9.8	7	1.4	221	0.24	0.45	1	3260	0.43	0.7	117	4.5	14.5	34	34
14816	4700	3.45	10.9	5	1.7	285	0.28	0.77	0.7	3810	0.36	0.4	144	6.2	13.1	49	18.4
14828	1400	1.72	11.4	6	1.1	404	0.29	0.5	0.8	3940	0.29	0.4	141	3.3	17.5	32	20.7
14844	2200	5.28	17.9	4	1.4	265	0.33	0.23	1	5590	0.49	0.6	262	3.3	13	40	30.5
14680	2200	5.2	12.8	8	1.4	348	0.3	0.77	1.1	4040	0.43	0.7	151	4.8	17.8	38	64.4
14871	3800	4.15	12.7	4	1.7	405	0.31	0.19	1	4990	0.32	0.7	183	6	15.3	43	22.6
14887	5400	1.41	14	2	1.3	424	0.33	0.09	1.2	4960	0.28	0.7	188	5.2	15.1	39	22.8
14689	7900	1.27	5.3	3	0.9	141	0.21	0.15	3.1	1580	0.18	1.6	51	3	8.3	16	33.4
14695	1600	3.83	11.9	5	1.5	226	0.25	0.18	1	4310	0.23	0.9	161	6	14.9	49	48.5
14742	2100	2.37	15.2	7	1.9	302	0.34	0.23	1.6	4690	0.25	0.9	215	6.6	12	53	32.7
14666	3800	3.07	15.1	3	1.5	416	0.41	0.06	1.3	5070	0.27	1	209	8	15.4	38	27.7
14685	21000	3.51	25.5	6	2.2	393	0.26	0.15	1.3	7690	0.32	1	269	5.5	14.5	43	35
14685B	20400	3.19	23.4	5	1.9	374	0.25	0.14	1.4	7930	0.37	0.9	276	5.2	13.6	46	43.4
14545	1900	1.48	8.5	1	1.4	409	0.36	0.05	1.5	3980	0.26	0.8	90	4.2	16.3	26	44.7
14565	2600	4.4	8.3	2	1.4	259	0.32	0.14	1.3	3800	0.37	0.6	80	4.7	16.9	16	32.5
14571	11100	2.6	7.8	5	1.4	312	0.28	0.15	2.3	3170	0.26	1.3	86	4.8	11.2	34	42
14578	21300	2.42	11	4	1.4	324	0.33	0.11	1.8	4630	0.29	1.2	112	4.1	15.9	19	56
14578B	21100	2.47	11.3	4	1.4	330	0.3	0.09	2	4430	0.32	1.2	111	4.1	17.1	19	74.1
14598	1500	1.89	8.4	2	0.9	569	0.36	0.06	0.6	4330	0.28	0.4	131	2.7	13.2	47	22.7
14893	1100	6.95	20.1	3	1.7	379	0.36	0.12	1.3	6030	0.25	1.5	283	9.3	15.3	49	40.7
14899	200	3.09	19.4	2	1	366	0.34	0.06	1	5850	0.16	0.6	262	8.2	13.8	52	25.5
14908	900	4.87	19	2	1.6	479	0.39	0.1	1.6	5910	0.22	1.2	268	12.1	16.7	42	34.7
14917	1900	4.6	17.7	4	1.7	309	0.3	0.26	2.8	4580	0.22	1.7	178	8.9	16.1	44	74.3
14925	1500	6.54	15.5	3	1.7	353	0.38	0.11	1.4	5090	0.29	0.7	224	5.1	15	52	31
14998	1300	5.17	10.8	3	1.4	412	0.26	0.16	0.7	4460	0.3	0.6	152	13.5	16.6	41	22.5
15862	800	2.81	11.3	2	1.1	327	0.29	0.12	0.7	4050	0.29	0.3	146	2.9	14	49	17.8
15870	1400	6.6	14.3	3	1.4	234	0.31	0.15	1.3	4460	0.36	0.8	203	6.1	16.1	53	23.4

Project:
Client:
Comments:
Sample
Id.
Method
MDL
Crustal Abundance: From
Crustal Abundance: To Crustal Abundance: To

15887
 15891
 15908
 15911

Minimum
 Mean

Standard Deviation
Percentile
25 Percentile
Median
75 Percentile
90 Percentile

Varianc
Skewnes
Coefficient of Variation (CoV) ${ }^{2}$
Count

Schaft Creek
Copper Fox Metals Inc.
ICP Metals Data
Sampled by MDAG on Feb 7'07.
Rare earth elements may not be totally soluble in MS61 method.
ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm
Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

Sulphur S	Antimony Sb	Scandium Sc	Selenium Se	$\begin{aligned} & \text { Tin } \\ & \mathrm{Sn} \end{aligned}$	Strontium Sr	Tantalum Ta	Tellurium Te	Thorium Th	Titanium Ti	Thallium TI	Uranium U	Vanadium V	Tungsten W	Yttrium Y	$\begin{aligned} & \text { Zinc } \\ & \text { Zn } \end{aligned}$	$\begin{aligned} & \text { Zirconium } \\ & \quad \mathrm{Zr} \end{aligned}$
(ppm)																
ME-MS61																
100	0.05	1	1	0.2	0.2	0.05	0.05	0.2	50	0.02	0.1	1	0.1	0.1	2	0.5
240	0.1	NA	0.05	0.5	1	0.8	NA	0.004	300	0.16	0.45	20	0.6	20	16	19
2400	1.5	NA	0.6	6	2000	4.2	NA	17	13800	2.3	3.7	250	2.2	90	165	500
1200	7.41	17.1	3	1.3	373	0.39	0.16	1.5	5450	0.28	0.9	246	3.3	16	63	27.3
3300	5.99	15.3	5	1.7	402	0.34	0.37	1	5100	0.24	0.7	214	3.6	13.6	42	23.2
1400	7.05	15	4	1.3	382	0.3	0.23	1.1	4920	0.31	0.6	213	5.3	15.1	51	19.4
2200	6.21	14.2	5	1.5	288	0.32	0.29	1.2	4740	0.34	0.8	207	5.4	15.5	43	26.1
900	4.97	17.9	3	1.3	335	0.37	0.13	1.5	5430	0.29	0.7	248	3	15.3	49	26.4
21300	11	25.5	8	3.8	798	0.41	0.85	3.7	7930	1.04	2.3	283	30.1	19.9	205	74.3
200	1.25	5	1	0.6	88	0.16	0.05	0.6	1580	0.14	0.3	47	2.7	6.3	16	17.6
4966	3.93	12.6	3.46	1.41	330	0.29	0.22	1.5	4086	0.35	0.93	152	8.08	14.4	48.1	34.9
5631	1.97	5.39	1.53	0.44	108	0.055	0.19	0.81	1307	0.17	0.5	66.7	6.18	2.86	32	14.5
1180	1.71	6.74	2	1	219	0.22	0.06	0.7	2168	0.22	0.4	69.4	3.3	10.4	25.6	19.7
1500	2.45	7.85	2	1.1	259	0.25	0.095	0.9	3275	0.27	0.6	97.5	4.15	13.2	34	23
2700	3.51	11.4	3	1.4	335	0.28	0.16	1.3	4150	0.31	0.8	146	5.5	15	42	32.2
5150	5.15	15.4	4	1.6	398	0.32	0.26	1.8	4715	0.38	1.2	206	10.4	16.2	49	42.7
15040	6.55	20.3	5.2	1.72	423	0.36	0.5	2.84	5478	0.51	1.72	251	16	17.2	67	55.8
3650	2.7	7.55	2	0.5	138	0.075	0.17	0.9	1440	0.11	0.6	108	6.25	3	15	19.7
31711935	3.88	29.1	2.36	0.19	11719	0.0031	0.037	0.66	1709027	0.03	0.25	4454	38.2	8.16	1027	211
1.91	1.03	0.69	0.9	2.75	1.22	0.037	1.81	1.15	0.35	2.21	0.95	0.29	1.9	-0.91	3.21	1
1.13	0.5	0.43	0.44	0.31	0.33	0.19	0.86	0.54	0.32	0.49	0.53	0.44	0.76	0.2	0.67	0.42
59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59
3.36	NOTE: if	ta is box	d, then dat	s 3 times	he maximu	crustal ab	undance.									

${ }^{1}$ Interquartile Range (IQR) $=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
${ }^{2}$ Coefficient of Variation (CoV) = standard deviation divided by mean
NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.
NOTE: If data was reported as > detection limit the detection limit is shown in bold and was used in subsequent calculations.

Project:
Data:
Comments:

Sample Id.	$\begin{gathered} \mathrm{Al}_{2} \mathrm{O}_{3} \\ (\%) \end{gathered}$			$\mathrm{Cr}_{2} \mathrm{O}_{3}$ (\%)	$\mathrm{Fe}_{2} \mathrm{O}_{3}$ (\%)	$\mathrm{K}_{2} \mathrm{O}$ (\%)	MgO (\%)	$\underset{(\%)}{\text { MnO }}$	$\mathrm{Na}_{2} \mathrm{O}$ (\%)	$\mathrm{P}_{2} \mathrm{O}_{5}$ (\%)	SiO_{2} (\%)	SrO		LOI	Total (\%)
Method	$\underset{\text { ME-XRF06 }}{(\%)}$	${ }_{\text {ME-XRF06 }}^{(\%)}$	${ }_{\text {ME-XRF06 }}^{\text {(\%) }}$	(\%) ME-XRF06	$\stackrel{(\%)}{\text { ME-XRF06 }}$	$\underset{\text { ME-XRF06 }}{(\%)}$	$\underset{\text { ME-XRF06 }}{(\%)}$	${ }_{\text {ME-XRF06 }}^{(\%)}$	$\underset{\text { ME-XRF06 }}{(\%)}$						
MDL	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
14018	16.2	0.13	2.53	0.005	3.77	2.92	1.74	0.05	4.01	0.14	62.92	0.05	0.42	3.69	98.58
14021	14.75	0.05	3.56	0.005	2.62	2.59	1.47	0.07	2.96	0.12	65.03	0.02	0.36	4.86	98.47
14036	14.93	0.06	2.56	0.005	3.72	2.51	1.51	0.05	3.13	0.12	64.89	0.03	0.38	4.53	98.43
14043	15.21	0.03	1.98	0.005	4.23	1.18	3.06	0.05	4.13	0.12	64.74	0.03	0.41	3.53	98.71
14060	15.16	0.04	4.27	0.005	5.14	1.42	3.28	0.05	3.71	0.26	58.18	0.05	0.73	6.18	98.48
14067	16.07	0.04	3.54	0.01	6.18	1.29	4.07	0.09	4.15	0.22	57.69	0.04	0.7	4.08	98.17
14076	16.09	0.05	5.61	0.005	7.43	1.58	3.72	0.19	2.64	0.21	55.56	0.04	0.72	5.1	98.95
14083	16.4	0.08	5.33	0.005	8.26	3.49	2.82	0.17	1.62	0.21	53.34	0.02	0.74	6.28	98.77
14099	15.15	0.1	4.16	0.005	3.38	3.94	1.47	0.14	0.73	0.11	63.71	0.01	0.31	5.67	98.89
14103	15	0.03	4.03	0.005	3.11	2.07	2.04	0.08	2.99	0.13	61.55	0.02	0.41	6.91	98.38
14130	17.11	0.06	3.59	0.005	2.6	2.11	1.61	0.02	4.61	0.28	60.15	0.03	0.53	5.91	98.62
14144	18.29	0.04	4.95	0.005	5.05	1.84	1.81	0.05	4.05	0.36	53.8	0.04	0.63	7.48	98.40
14148	16.83	0.07	6.26	0.005	5.63	2.49	3.13	0.05	1.72	0.26	52	0.03	0.64	9.85	98.97
14156	15.34	0.03	3.29	0.005	2.46	1.41	1.21	0.03	4.53	0.1	64.96	0.03	0.29	4.66	98.35
14162	14.36	0.06	7.5	0.01	5.92	1.79	3.97	0.1	2.27	0.2	50.21	0.02	0.69	11.1	98.20
14169	15.54	0.01	3.15	0.005	1.69	1.07	0.61	0.03	5.76	0.12	66.91	0.02	0.31	3.74	98.97
14232	19.47	0.02	3.67	0.005	3.86	2.01	1.48	0.02	5.31	0.3	56.55	0.04	0.61	5.19	98.54
14250	18.02	0.02	5.47	0.005	6.59	1.67	2.87	0.05	4.48	0.28	51.91	0.04	0.75	6.29	98.45
14260	17.85	0.02	4.18	0.005	6.23	1.9	2.21	0.03	4.77	0.28	54.62	0.04	0.72	5.77	98.63
14276	19.76	0.12	5.87	0.005	5.6	0.86	2.56	0.14	4.97	0.29	54.07	0.08	0.67	3.49	98.49
14295	17.5	0.01	5.22	0.005	6.81	1.83	2.43	0.05	4	0.27	53.53	0.03	0.73	6.48	98.90
14301	17.72	0.03	4.93	0.005	4.47	2.34	2	0.06	3.33	0.28	54.86	0.02	0.7	7.95	98.70
14323	19.07	0.03	5.02	0.005	5.54	2.1	1.55	0.04	4.17	0.28	54.65	0.04	0.56	5.5	98.56
14332	19.78	0.02	4.67	0.005	5.19	2.46	1.71	0.03	4.03	0.3	54.16	0.04	0.6	5.57	98.57
14345	19.52	0.02	3.44	0.005	3.18	2.73	1.64	0.01	4.47	0.28	57.5	0.03	0.58	5.16	98.57
14348	19.93	0.02	3.09	0.005	5.12	2.25	1.97	0.02	4.79	0.31	54.97	0.03	0.61	5.01	98.13
14797	18.18	0.02	5.12	0.005	6.2	2.28	2.46	0.06	3.22	0.27	51.74	0.03	0.7	8.21	98.50
14808	15.54	0.02	6.64	0.005	5.44	2.49	2.62	0.06	2.5	0.23	52.62	0.02	0.56	10.2	98.95
14816	17.11	0.02	4.56	0.005	6.06	2.5	2.78	0.05	3.25	0.26	53.34	0.03	0.65	7.62	98.24
14828	17.1	0.08	5.7	0.005	5.75	1.94	2.73	0.06	3.81	0.25	51.87	0.04	0.63	8.24	98.21
14844	17.61	0.04	3.8	0.005	7.4	1.98	5.94	0.03	2.92	0.26	52.79	0.03	0.93	5.17	98.91
14680	17.54	0.03	5.54	0.01	6.31	1.81	2.5	0.06	4.05	0.26	53.34	0.04	0.67	6.08	98.24
14871	18.56	0.01	4.62	0.005	6.55	1.36	2.87	0.04	5.16	0.24	53.53	0.04	0.82	4.77	98.58
14887	17.6	0.04	6.71	0.005	7.31	1.24	3.61	0.07	4.05	0.23	50.56	0.04	0.79	6.23	98.49
14689	15.75	0.01	2.71	0.005	1.96	1.91	0.91	0.03	4.34	0.11	66.25	0.02	0.33	3.81	98.15
14695	17.98	0.02	4.98	0.005	5.19	2.57	2.41	0.07	3.57	0.26	53.38	0.02	0.68	7.34	98.48
14742	18.48	0.02	3.84	0.005	4.8	1.49	3.39	0.04	5.21	0.25	54.87	0.03	0.86	4.97	98.26
14666	17.45	0.04	5.2	0.005	7.38	1.53	3.59	0.06	4.43	0.25	53.21	0.04	0.84	4.88	98.91
14685	16.54	0.05	4.49	0.005	8.92	1.47	4.51	0.04	4.03	0.31	49.87	0.04	1.38	7.01	98.67
14685B	16.58	0.04	4.16	0.005	9.45	1.54	4.37	0.04	3.98	0.3	50.4	0.04	1.38	5.99	98.28
14545	18.58	0.1	5.18	0.005	5.98	1.37	2.17	0.03	4.2	0.27	56.26	0.04	0.65	4.1	98.94
14565	17.23	0.02	6.05	0.005	5.25	2.14	1.89	0.06	3.57	0.26	53.85	0.03	0.63	7.44	98.43
14571	16.48	0.05	3.51	0.005	3.99	1.76	2.03	0.02	4.32	0.22	59.95	0.04	0.59	5.14	98.11
14578	16.78	0.07	5.57	0.005	5.71	1.89	1.99	0.04	4	0.31	54.01	0.03	0.86	7.27	98.54
14578B	16.4	0.09	5.75	0.005	5.95	1.84	1.97	0.04	3.91	0.3	54.47	0.03	0.82	6.61	98.19
14598	19.18	0.02	4.52	0.005	6.5	1.54	3.79	0.07	3.95	0.31	52.94	0.06	0.74	5.22	98.85
14893	17.39	0.05	5.57	0.005	7.59	1.11	4.07	0.06	4.23	0.25	50.42	0.04	1	6.37	98.16
14899	18.24	0.04	4.77	0.005	8.14	0.9	6.3	0.06	3.94	0.25	48.95	0.04	0.97	5.91	98.52
14908	17.57	0.08	4.99	0.005	7.49	1.51	3.56	0.06	5.09	0.26	52.92	0.05	0.97	3.87	98.43
14917	16.75	0.09	3.18	0.005	3.43	1.86	2.74	0.04	5.62	0.22	59.61	0.03	0.8	3.75	98.13
14925	17.48	0.04	4.83	0.005	6.57	1.8	3.11	0.05	4.16	0.25	54.26	0.04	0.88	4.77	98.25
14998	17.84	0.03	5.3	0.005	6.2	1.39	2.47	0.05	4.81	0.28	53.76	0.04	0.72	5.99	98.89
15862	17.45	0.03	5.66	0.005	6.02	1.73	2.74	0.07	4.12	0.26	52.87	0.03	0.68	7.2	98.87
15870	15.28	0.12	6.1	0.005	5.48	2.09	2.68	0.06	3.07	0.23	54.41	0.03	0.74	8.21	98.51
15879	17.04	0.09	6.38	0.005	7.37	1.69	2.84	0.06	3.81	0.25	50.72	0.04	0.9	7.09	98.29
15887	17.84	0.05	5.62	0.005	5.41	1.4	2.46	0.04	4.64	0.22	54.43	0.04	0.86	5.38	98.40

Project:
Client
Data:
Comments:

Schaft Creek
Copper Fox Metals Inc.
Whole Rock by XRF
Sampled by MDAG on Feb 7'07.

Sample															
Id.	$\mathrm{Al}_{2} \mathrm{O}_{3}$	BaO	CaO	$\mathrm{Cr}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$\mathrm{K}_{2} \mathrm{O}$	MgO	MnO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	SiO_{2}	SrO	TiO_{2}	LOI	Total
Method	ME-XRF06														
MDL	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
15891	17.63	0.15	6.76	0.005	5.43	1.99	2.66	0.06	4.12	0.23	51.38	0.04	0.86	7.61	98.93
15908	17.38	0.03	6.09	0.005	4.92	2.09	2.86	0.05	3.44	0.23	53.48	0.03	0.81	7.13	98.55
15911	17.39	0.05	4.88	0.005	6.78	1.62	3.54	0.05	3.89	0.25	52.8	0.04	0.91	5.87	98.08
Maximum	19.9	0.15	7.5	0.01	9.45	3.94	6.3	0.19	5.76	0.36	66.9	0.08	1.38	11.1	
Minimum	14.4	0.01	1.98	0.005	1.69	0.86	0.61	0.01	0.73	0.1	49	0.01	0.29	3.49	
Mean	17.2	0.048	4.76	0.0053	5.54	1.89	2.69	0.057	3.91	0.24	55.5	0.035	0.7	6.02	
Standard Deviation	1.37	0.033	1.19	0.0011	1.7	0.58	1.08	0.033	0.95	0.06	4.56	0.011	0.22	1.65	
10 Percentile	15.2	0.02	3.17	0.005	3.17	1.28	1.5	0.03	2.86	0.12	50.7	0.02	0.4	3.86	
25 Percentile	16.3	0.02	3.82	0.005	4.64	1.5	1.97	0.04	3.5	0.22	52.8	0.03	0.6	4.92	
Median	17.4	0.04	4.93	0.005	5.63	1.84	2.62	0.05	4.03	0.25	54	0.04	0.7	5.91	
75 Percentile	17.9	0.06	5.59	0.005	6.56	2.12	3.2	0.06	4.45	0.28	57	0.04	0.82	7.11	
90 Percentile	19.1	0.092	6.13	0.005	7.44	2.52	3.99	0.082	4.99	0.3	63.9	0.04	0.91	8	
Interquartile Range (IQR) ${ }^{1}$	1.62	0.04	1.77	0	1.93	0.62	1.24	0.02	0.94	0.06	4.19	0.01	0.21	2.18	
Variance	1.88	0.0011	1.43	1.2E-06	2.89	0.33	1.18	0.0011	0.9	0.0036	20.8	0.00012	0.047	2.72	
Skewness	-0.0061	1.24	-0.16	4.2	-0.21	1.03	1.01	2.22	-0.92	-0.99	1.15	1.02	0.6	0.79	
Coefficient of Variation (CoV) ${ }^{2}$	0.08	0.68	0.25	0.21	0.31	0.31	0.4	0.59	0.24	0.25	0.082	0.32	0.31	0.27	
Count	59	59	59	59	59	59	59	59	59	59	59	59	59	59	

${ }^{1}$ Interquartile Range $(I Q R)=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
${ }^{2}$ Coefficient of Variation (CoV) $=$ standard deviation divided by mean
NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.

Project:
Client:
Comments:

Schaft Creek
Copper Fox Metals Inc.
Calculated Mineralogy
Sampled by MDAG on Feb 7'07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Calculated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S (Pyrite) | S (Chalcopyrite) | S (Arsenopyrite) | S (Galena) | S (Cinnibar) | S (Molybdenite) | S (Sphalerite) |
| FeS_{2} | $\mathrm{CuFeS}_{2}+\mathrm{CuS}_{2}$ | FeAsS +AsS | PbS | HgS | MoS_{2} | ZnS |

${ }_{(\%)}$
(\%)

0.632	0.130
0.400	0.176
1.211	0.194
0.090	0.134
0.340	0.264
0.151	0.248
0.612	0.131
1.293	0.137
0.181	0.122
-0.021	0.266
-0.275	0.559
-0.105	0.344
-0.190	0.291
-0.059	0.211
-0.018	0.103
-0.106	0.386
-0.207	0.340
-0.157	0.320
-0.166	0.493
-0.018	0.151
0.195	0.235
0.066	0.246
-0.095	0.227
-0.099	0.351
-0.111	0.613
-0.058	0.495
-0.122	0.177
-0.136	0.267
0.053	0.401
-0.235	0.329
-0.113	0.302
-0.226	0.399
-0.047	0.392
0.216	0.201
0.479	0.204
-0.066	0.152
-0.069	0.212
0.161	0.145
1.352	0.437
1.467	0.462
0.039	0.122
-0.032	0.270
0.471	0.551
1.516	0.301
1.575	0.331
0.053	0.071
-0.094	0.165
-0.026	0.041
-0.054	0.115
-0.221	0.384
-0.041	0.163
-0.068	0.182
-0.058	0.119
-0.108	0.204
-0.126	0.217
-0.231	0.512
-0.153	0.247
-0.245	0.430

0.00067
0.00081
$\begin{array}{ll}0.00081 & 0.000000160 \\ 0.00142 & 0.000\end{array}$

0.000000160	0.0024	0.0021
0.000000080	0.0232	0.0028
0.000000080	0.0439	0.0021
0.000000080	0.0216	0.0023
0.000000080	0.0147	0.0014
0.000000080	0.0060	0.0036
0.000000160	0.0037	0.0082
0.000000160	0.0009	0.0064
0.000000320	0.0005	0.0103
0.000000160	0.0154	0.0034
0.000000320	0.0054	0.0013
0.000000160	0.0048	0.0023
0.000000320	0.0171	0.0020
0.000000080	0.0052	0.0018
0.000000080	0.0319	0.0034
0.000000320	0.0118	0.0012
0.000000160	0.0065	0.0011
0.000000160	0.0249	0.0019
0.000000160	0.0115	0.0018
0.000000080	0.0015	0.0056
0.000000320	0.0008	0.0017
0.000000160	0.0143	0.0019
0.000000080	0.0045	0.0015
0.000000160	0.0068	0.0016
0.000000080	0.0167	0.0014
0.000000160	0.0114	0.0020
0.000000160	0.0141	0.0021
0.000000960	0.0387	0.0017
0.000000320	0.0035	0.0025
0.000000480	0.0122	0.0016
0.000000320	0.0085	0.0020
0.000000320	0.0333	0.0019
0.000000160	0.0160	0.0022
0.000000160	0.0006	0.0020
0.000000080	0.0056	0.0008
0.000000160	0.0427	0.0025
0.000000160	0.0441	0.0027
0.000000080	0.0019	0.0019
0.000000640	0.0080	0.0022
0.000000640	0.0052	0.0023
0.000000080	0.0009	0.0013
0.000000080	0.0008	0.0008
0.000000160	0.0067	0.0017
0.000000160	0.0018	0.0010
0.000000160	0.0021	0.0010
0.000000080	0.0036	0.0024
0.000000160	0.0067	0.0025
0.000000160	0.0013	0.0026
0.000000080	0.0068	0.0021
0.000000160	0.0011	0.0022
0.0000000160	0.0018	0.0026
0.000000160	0.0043	0.0021
0.000000160	0.0049	0.0025
0.000000080	0.0012	0.0027
0.000000160	0.0013	0.0032
0.000000160	0.0110	0.0021
0.000000160	0.0069	0.0026
0.000000480	0.0207	0.0022

Project:

Client:
Comments:

Sample

Id.

15911

Maximum
Minimu
Standard Deviation
10 Percentile
25 Percentile
25 Percen
Median
75 Percentile
90 Percentile
Interquartile Range (IQR) ${ }^{1}$
Variance
Skewness
Coefficient of Variation (CoV) ${ }^{2}$
Count

Schaft Creek
Copper Fox Metals Inc.
Calculated Mineralogy
Sampled by MDAG on Feb 7'07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Calculated S (Pyrite)	Calculated S (Chalcopyrite)	Calculated S (Arsenopyrite)	Calculated S (Galena)	Calculated S (Cinnibar)	Calculated S (Molybdenite)	Calculated S (Sphalerite)
FeS_{2}	$\mathrm{CuFeS}_{2}+\mathrm{CuS}_{2}$	FeAsS + AsS	Pbs	HgS	MoS_{2}	ZnS
(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)
-0.122	0.184	0.00009	0.00004	0.000000320	0.0103	0.0025
1.58	0.61	0.0013	0.0037	0.00000096	0.044	0.01
-0.28	0.041	0.0000043	0.000025	0.00000008	0.00046	0.0008
0.14	0.27	0.00022	0.00018	0.0000002	0.011	0.0024
0.48	0.13	0.00025	0.00051	0.00000016	0.012	0.0016
-0.21	0.12	0.000071	0.000037	0.00000008	0.0011	0.0013
-0.12	0.16	0.00009	0.00004	0.00000008	0.0023	0.0017
-0.054	0.25	0.00013	0.000051	0.00000016	0.0067	0.0021
0.17	0.35	0.00022	0.000083	0.00000016	0.014	0.0024
0.75	0.47	0.0006	0.00031	0.00000032	0.026	0.0034
0.29	0.18	0.00013	0.000043	0.00000008	0.012	0.00075
0.23	0.018	0.000000061	0.00000026	2.7E-14	0.00013	0.0000026
1.99	0.68	2.61	5.92	2.59	1.63	3.21
3.39	0.5	1.13	2.84	0.81	1.07	0.67
59	59	59	59	59	59	59

Calculated S (Pyrite) (\%) =
\% S (Sulphide) + S (del) - S (Chalcopyrite) - S (Arsenopyrite) - S (Galena) - S (Cinnibar) - S (Molybdenite) - S (Spr Calculated S (Chalcopyrite) CuFeS2 + CuS2 (\%) = (1 / 0.99) * Copper (ppm) / 10000
Calculated S (Arsenopyrite) FeAsS + AsS (\%) = (1 / 2.33) * Iron (\%) / 10000
Calculated S (Galena) PbS (\%) $=(1 / 6.45) * \operatorname{Iron}(\mathrm{ppm}) / 10000$
Calculated $S($ Cinnibar $) \mathrm{HgS}(\%)=(1 / 6.25) *$ Gallium $(\mathrm{ppm}) / 10000$
Calculated S (Molybdenite) MoS2 $(\%)=(1 / 1.5)$ * Germanium (ppm) / 10000
Calculated S (Sphalerite) ZnS (\%) = (1/2) * Hafnium (ppm) / 10000

Project:
Data:
Comments:

Schaft Creek

Sample
Sam.
Id.

14018
14021
14036
14043
14060
14067
14076
14083
14099
14103
14130
14144
14148
14156
14162
14169
14232
14250
14260
14276
14295
14301
14323
14332
14345
14348
14797
14808
14816
14828
14844
14680
14871
14887
14689
14695
14742
14666
14685
$14685 B$
14545
14565
14571
14578
$14578 B$
14598
14893
14899
14908
14917
14925
14998
15862
15870
15879
15887
15891
15908

Whole Rock
\(\left.$$
\begin{array}{ccc}\begin{array}{c}\text { Whole Rock } \\
\text { Al }\end{array} & \begin{array}{c}\text { ICP } \\
\text { (ppm) }\end{array} & \begin{array}{c}\text { Al } \\
\text { (ppm) }\end{array}
$$

Difference

(\%)^{3}\end{array}\right]\)| 85735 | 80300 | -6.34 |
| :---: | :---: | :---: |
| 78061 | 77000 | -1.36 |
| 79014 | 74100 | -6.22 |
| 80495 | 75600 | -6.08 |
| 80231 | 79600 | -0.79 |
| 85047 | 85100 | 0.06 |
| 85153 | 90000 | 5.69 |
| 86793 | 88500 | 1.97 |
| 80178 | 72400 | -9.70 |
| 79384 | 76000 | -4.26 |
| 90551 | 85100 | -6.02 |
| 96796 | 93900 | -2.99 |
| 89069 | 8100 | -8.95 |
| 81183 | 76900 | -5.28 |
| 75997 | 79700 | 4.87 |
| 82242 | 76400 | -7.10 |
| 103041 | 94400 | -8.39 |
| 95367 | 94400 | -1.01 |
| 94467 | 89500 | -5.26 |
| 104755 | 98400 | -5.91 |
| 92615 | 89700 | -3.15 |
| 93779 | 87600 | -6.59 |
| 100924 | 93600 | -7.26 |
| 104681 | 96200 | -8.10 |
| 103305 | 97300 | -5.81 |
| 105475 | 94300 | -10.59 |
| 96213 | 86900 | -9.68 |
| 82242 | 81300 | -1.15 |
| 90551 | 82900 | -8.45 |
| 90498 | 89200 | -1.43 |
| 93197 | 91800 | -1.50 |
| 92826 | 90500 | -2.51 |
| 98225 | 96200 | -2.06 |
| 93144 | 96900 | 4.03 |
| 83353 | 83800 | 0.54 |
| 95155 | 97000 | 1.94 |
| 97801 | 90600 | -7.36 |
| 92350 | 92100 | -0.27 |
| 87534 | 85900 | -1.87 |
| 87746 | 83100 | -5.29 |
| 98330 | 94700 | -3.69 |
| 91186 | 88300 | -3.16 |
| 87217 | 82200 | -5.75 |
| 88804 | 86800 | -2.26 |
| 86793 | 82400 | -5.06 |
| 101506 | 92500 | -8.87 |
| 92033 | 92000 | -0.04 |
| 96531 | 97000 | 0.49 |
| 92985 | 95800 | 3.03 |
| 88646 | 85300 | -3.77 |
| 92509 | 87800 | -5.09 |
| 94414 | 90100 | -4.57 |
| 92350 | 87200 | -5.58 |
| 80866 | 81000 | 0.17 |
| 90180 | 90600 | 0.47 |
| 94414 | 87200 | -7.64 |
| 93303 | 89500 | -4.08 |
| 91980 | 87100 | -5.31 |
| | | |

Whole Rock ICP
Ba * (ppm)
1164
448

1164
448
537
269
358
358
448
717
896
269
537
358
627
269
537
90
179
179
179
1075
90
269
269
179
179
179
179
179
179
717
358
269
90
358
90
179
179
358
448
358
896
179
448
627
806
179
448
358
717
806
358
269
269
107
806
4
13
273
-

Whole Rock Ca (ppm)	ICP Ca (ppm)
18082	17800
25443	26200
18296	18400
14151	14000
30517	31400
25300	25900
40094	43400
38093	40300
29731	29500
28802	29300
25657	26200
35377	37500
44740	46300
23513	24700
53602	55900
22513	23200
26229	26600
39094	40700
29874	30400
41952	43100
37307	39100
35234	36700
35878	37500
33376	33900
24585	25500
22084	21500
36592	37800
47456	48700
32590	33300
40738	43400
27158	28200
39594	41400
33019	34000
47956	51800
19368	21800
35592	39800
27444	27800
37164	39300
32090	33100
29731	29500
37021	38200
43239	45800
25086	25900
39808	42000
41095	43200
32304	33500
39808	41600
34091	35400
35663	37900
22727	23200
34520	36000
37879	39800
40452	42200
43596	46400
45597	48300
40166	41200
48313	51300
43525	45200

Differ

Whole Rock ICP

[^1]Whole Ro
Fe *
$\stackrel{\mathrm{CP}}{\mathrm{Fe}}$
Difference
$(\%)^{3}$

34	24
34	21
34	20
34	31
34	26
68	36
34	33
34	49
34	16
34	20
34	15
34	5
34	4
34	25
68	71
34	16
34	14
34	12
34	3
34	17
34	12
34	15
34	3
34	3
34	11
34	11
34	6
34	6
34	5
34	4
34	39
68	5
34	10
34	20
34	10
34	6
34	24
34	21
34	5
34	7
34	16
34	11
34	7
34	9
34	10
34	3
34	44
34	43
34	39
34	16
34	30
34	6
34	4
34	27
34	29
34	25
34	22
34	24

-29.85 -38.62 -41.54 -9.38 -24.00 -47.38 -3.54 43.23 -53.23 -41.54 -56.15 -85.38 -88.31 -26.92 3.77 -53.23 -59.08 -64.92 -91.23 -50.31 -64.92 -56.15 -91.23 -91.23 -67.85 -67.85 -82.46 -82.46 -85.38 -88.31 14.00 -92.69 -70.77 -41.54 -70.77 -82.46 -29.85 -38.62 -85.38 -79.54 -53.23 -67.85 -79.54 -73.69 -70.77 -91.23 28.62 25.69 14.00 -53.23 -12.31 -82.46 -88.31 -21.08 -15.23 -26.92 -35.69 -29.85

26369	25800	-2.16
18325	18100	-1.23
26019	25600	-1.61
29586	28500	-3.67
35951	35900	-0.14
43225	42900	-0.75
51968	54600	5.06
57773	57800	0.05
23641	22300	-5.67
21752	21200	-2.54
18185	18000	-1.02
35322	36100	2.20
39378	38300	-2.74
17206	17400	1.13
41407	42500	2.64
11820	11800	-0.17
26998	26400	-2.22
46093	45800	-0.64
43575	42300	-2.93
39168	38900	-0.69
47632	47300	-0.70
31265	31300	0.11
38749	38700	-0.13
36301	35500	-2.21
22242	22100	-0.64
35811	34700	-3.10
43365	42700	-1.53
38049	37600	-1.18
42386	41300	-2.56
40218	41200	2.44
51758	51800	0.08
44134	41400	-6.20
45813	46100	0.63
51129	53100	3.86
13709	14800	7.96
36301	39900	9.92
33573	33500	-0.22
51618	53900	4.42
62390	63900	2.42
66097	59700	-9.68
41826	41700	-0.30
36720	37200	1.31
27908	26900	-3.61
39938	41600	4.16
41616	39200	-5.81
45463	46600	2.50
53087	53400	0.59
56934	56900	-0.06
52388	53200	1.55
23991	24200	0.87
45933	46200	0.54
43365	43600	0.54
42106	41600	-1.20
38329	39200	2.27
51548	51500	-0.09
37840	34600	-8.56
37979	38500	1.37
34412	34500	0.25

Project:
Client
Comments:

Schaft Creek
Copper Fox Metals Inc.
QA/QC Data - Comparison on ICP Metals and Whole Rock Analyses
Sampled by MDAG on Feb 7'07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Sample Id.	Whole Rock Al * (ppm)	$\begin{aligned} & \text { ICP } \\ & \text { AI } \\ & \text { (ppm) } \end{aligned}$	Difference (\%) ${ }^{3}$	Whole Rock $B a$ * (ppm)	$\begin{gathered} \text { ICP } \\ \text { Ba } \\ (\mathrm{ppm}) \end{gathered}$	Difference $(\%)^{3}$	Whole Rock Ca* (ppm)	$\begin{gathered} \text { ICP } \\ \text { Ca } \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	Whole Rock Cr * (ppm)	$\begin{gathered} \text { ICP } \\ \text { Cr } \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	Whole Rock Fe * (ppm)	$\begin{aligned} & \text { ICP } \\ & \mathrm{Fe} \\ & (\mathrm{ppm}) \end{aligned}$	Difference (\%) ${ }^{3}$
15911	92033	88600	-3.73	448	410	-8.45	34877	35200	0.93	34	33	-3.54	47422	46500	-1.94
Maximum			5.69			34			12.6			43.2			9.92
Minimum			-10.6			-33			-2.64			-92.7			-9.68
Mean			-3.63			-1.63			3.76			-49.3			-0.32
Standard Deviation			3.81			13			2.74			35			3.33
10 Percentile			-8.4			-16.3			0.85			-88.3			-3.62
25 Percentile			-6.15			-8.04			2.27			-81			-2.05
Median			-4.08			-4.17			3.72			-53.2			-0.17
75 Percentile			-1.08			5.14			5.1			-28.4			1.22
90 Percentile			0.82			12.8			6.3			-2.08			2.88
Interquartile Range (IQR) ${ }^{1}$			5.07			13.2			2.82			52.6			3.27
Variance			14.5			169			7.52			1223			11.1
Skewness			0.41			0.66			0.57			0.76			0.066
Coefficient of Variation (CoV) ${ }^{2}$			-1.05			-7.96			0.73			-0.71			-10.3
Count			59			59			59			59			59

${ }^{1}$ Interquartile Range $(\mathrm{IQR})=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
${ }^{2}$ Coefficient of Variation (CoV) = standard deviation divided by mean
${ }^{3}$ Difference (\%) = (ICP - Whole Rock) * 100 / Whole Rock

* Element calculated from Whole Rock XRF analysis

Al (Whole Rock) $=\left(\mathrm{Al}_{2} \mathrm{O}_{3}{ }^{\star} 2 \star 10000 \star 26.98\right) /(2 \star 26.98+3 \star 16)$ $\mathrm{Ba}($ Whole Rock $)=(\mathrm{BaO} * 10000 * 137.34) /(137.34+16)$ Ca (Whole Rock) $=\left(\mathrm{CaO}^{*} 10000 * 40.08\right) /(40.08+16)$
Cr (Whole Rock) $=\left(\mathrm{Cr}_{2} \mathrm{O}_{3}{ }^{*} 2^{*} 10000 * 52.00\right) /(2 * 52.00+3 * 16)$
$\mathrm{Fe}($ Whole Rock $)=\left(\mathrm{Fe}_{2} \mathrm{O}_{3}{ }^{*}{ }^{\star} 10000 * 55.85\right) /\left(2 \star 55.85+3^{*} 16\right)$

Project:
Data:
Comments:

Schaft Creek
Copper Fox Metals Inc.
QA/QC Data - Comparison on ICP Metals and Whole Rock Analyses
Sampled by MDAG on Feb 7'07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Sample Id.	Whole Rock K * (ppm)	$\begin{gathered} \text { ICP } \\ \text { K } \\ (\mathrm{ppm}) \end{gathered}$	Difference $(\%)^{3}$	Whole Rock Mg * (ppm)	ICP Mg (ppm)	Difference $(\%)^{3}$	Whole Rock Mn * (ppm)	$\begin{aligned} & \text { ICP } \\ & \text { Mn } \\ & (\mathrm{ppm}) \end{aligned}$	Difference $(\%)^{3}$	Whole Rock Na * (ppm)	$\begin{gathered} \text { ICP } \\ \mathrm{Na} \\ \text { (ppm) } \end{gathered}$	Difference $(\%)^{3}$	Whole Rock P* (ppm)	$\begin{aligned} & \text { ICP } \\ & \text { P } \\ & (\mathrm{ppm}) \end{aligned}$	Difference $(\%)^{3}$
14018	24239	24500	1.08	10494	10700	1.97	387	476	22.92	29748	31600	6.22	611	660	8.03
14021	21500	22200	3.26	8865	9200	3.78	542	629	16.03	21959	23800	8.38	524	570	8.85
14036	20836	21300	2.23	9106	9100	-0.07	387	475	22.67	23220	24700	6.37	524	570	8.85
14043	9795	10300	5.15	18454	19000	2.96	387	446	15.18	30638	32900	7.38	524	570	8.85
14060	11788	12000	1.80	19781	21000	6.16	387	422	8.98	27523	30500	10.82	1135	1290	13.70
14067	10708	11200	4.59	24545	26800	9.19	697	779	11.76	30787	35100	14.01	960	1120	16.66
14076	13116	14300	9.03	22434	25000	11.44	1471	1585	7.72	19585	23000	17.44	916	1070	16.76
14083	28971	30900	6.66	17007	17700	4.08	1317	1365	3.68	12018	13600	13.16	916	1070	16.76
14099	32706	32000	-2.16	8865	8200	-7.50	1084	1090	0.53	5416	5400	-0.29	480	470	-2.09
14103	17183	18100	5.33	12303	12900	4.85	620	686	10.72	22181	25100	13.16	567	620	9.29
14130	17515	18100	3.34	9710	10200	5.05	155	191	23.31	34199	38300	11.99	1222	1390	13.76
14144	15274	15600	2.13	10916	11600	6.27	387	451	16.47	30045	34900	16.16	1571	1830	16.49
14148	20670	20600	-0.34	18876	18900	0.13	387	429	10.79	12760	13800	8.15	1135	1220	7.53
14156	11705	12200	4.23	7297	7900	8.26	232	339	45.91	33606	37400	11.29	436	500	14.58
14162	14859	16000	7.68	23942	26200	9.43	774	853	10.14	16840	19300	14.61	873	980	12.29
14169	8882	9700	9.21	3679	4000	8.73	232	278	19.65	42731	47600	11.40	524	550	5.03
14232	16685	16800	0.69	8926	9100	1.95	155	189	22.02	39392	42800	8.65	1309	1430	9.23
14250	13863	14600	5.32	17308	18800	8.62	387	436	12.59	33235	38300	15.24	1222	1450	18.67
14260	15772	15900	0.81	13328	13900	4.29	232	275	18.36	35386	38600	9.08	1222	1390	13.76
14276	7139	7600	6.46	15439	16400	6.23	1084	1085	0.07	36870	40800	10.66	1266	1440	13.79
14295	15191	16000	5.33	14655	15500	5.77	387	436	12.59	29674	33600	13.23	1178	1360	15.43
14301	19425	19200	-1.16	12062	12400	2.81	465	517	11.26	24704	27300	10.51	1222	1380	12.94
14323	17432	18200	4.40	9348	9600	2.70	310	386	24.60	30935	35000	13.14	1222	1410	15.40
14332	20421	20200	-1.08	10313	10400	0.85	232	281	20.94	29897	32400	8.37	1309	1470	12.29
14345	22662	24000	5.90	9890	10300	4.14	77	150	93.68	33161	36900	11.28	1222	1380	12.94
14348	18678	18700	0.12	11881	12100	1.85	155	191	23.31	35535	38200	7.50	1353	1520	12.36
14797	18927	19500	3.03	14836	15200	2.46	465	559	20.30	23888	26700	11.77	1178	1330	12.88
14808	20670	20800	0.63	15801	16300	3.16	465	493	6.10	18546	20000	7.84	1004	1080	7.60
14816	20753	20900	0.71	16766	17000	1.40	387	438	13.11	24110	26700	10.74	1135	1230	8.41
14828	16104	17500	8.67	16464	18200	10.54	465	507	9.11	28265	32900	16.40	1091	1280	17.33
14844	16436	16900	2.82	35823	37900	5.80	232	319	37.30	21662	24600	13.56	1135	1290	13.70
14680	15025	16000	6.49	15077	16500	9.44	465	493	6.10	30045	34600	15.16	1135	1300	14.58
14871	11290	12300	8.95	17308	19200	10.93	310	374	20.73	38280	44300	15.73	1047	1230	17.44
14887	10293	11700	13.67	21771	24700	13.45	542	613	13.07	30045	35400	17.82	1004	1200	19.56
14689	15855	16400	3.44	5488	5600	2.04	232	301	29.55	32196	34300	6.53	480	540	12.50
14695	21334	22100	3.59	14534	15100	3.89	542	611	12.71	26484	30000	13.28	1135	1400	23.39
14742	12369	12800	3.49	20444	22400	9.57	310	401	29.45	38651	43600	12.81	1091	1220	11.83
14666	12701	12900	1.57	21650	22000	1.61	465	543	16.86	32864	35800	8.93	1091	1250	14.58
14685	12203	12100	-0.84	27199	27300	0.37	310	364	17.50	29897	32000	7.04	1353	1530	13.10
14685B	12784	13200	3.26	26354	28400	7.76	310	327	5.56	29526	33900	14.82	1309	1530	16.87
14545	11373	11800	3.76	13087	14000	6.98	232	273	17.50	31158	35000	12.33	1178	1330	12.88
14565	17764	18600	4.70	11398	12100	6.16	465	529	13.84	26484	29900	12.90	1135	1270	11.93
14571	14610	14200	-2.81	12242	11700	-4.43	155	230	48.49	32048	32200	0.47	960	1030	7.29
14578	15689	15800	0.71	12001	11800	-1.68	310	337	8.79	29674	31500	6.15	1353	1550	14.58
14578B	15274	15800	3.44	11881	12700	6.90	310	345	11.37	29006	32900	13.42	1309	1470	12.29
14598	12784	12400	-3.00	22857	22100	-3.31	542	631	16.39	29303	31400	7.16	1353	1540	13.84
14893	9214	10200	10.70	24545	27200	10.82	465	493	6.10	31380	36600	16.63	1091	1260	15.50
14899	7471	7700	3.07	37994	41300	8.70	465	546	17.50	29229	34100	16.67	1091	1260	15.50
14908	12535	13700	9.30	21470	24000	11.79	465	527	13.41	37760	44700	18.38	1135	1310	15.46
14917	15440	16100	4.27	16524	18300	10.75	310	379	22.34	41692	47300	13.45	960	1100	14.58
14925	14942	15400	3.07	18756	20400	8.77	387	408	5.36	30861	35600	15.36	1091	1230	12.75
14998	11539	12500	8.33	14896	16300	9.43	387	452	16.73	35683	41400	16.02	1222	1440	17.85
15862	14361	14800	3.06	16524	17400	5.30	542	584	7.73	30564	34400	12.55	1135	1260	11.05
15870	17349	18500	6.63	16162	17700	9.51	465	539	16.00	22775	26200	15.04	1004	1120	11.59
15879	14029	14900	6.21	17127	18800	9.77	465	554	19.22	28265	32900	16.40	1091	1280	17.33
15887	11622	11900	2.40	14836	15900	7.17	310	395	27.51	34422	39300	14.17	960	1090	13.54
15891	16519	17200	4.12	16042	17300	7.84	465	558	20.08	30564	34900	14.19	1004	1120	11.59
15908	17349	18000	3.75	17248	18500	7.26	387	433	11.82	25520	29000	13.64	1004	1130	12.59

Comments:

Sample

Id.

15911
Maximum
Minimum
Mean
Standard Deviation
10 Percentile
25 Percentile
25 Percentile
5 Percen
75 Percentile

Interquartile Range (IQR) ${ }^{1}$
Variance

Coefficient of Variation (CoV) ${ }^{2}$
Count

Schaft Creek
Copper Fox Metals Inc.
QA/QC Data - Comparison on ICP Metals and Whole Rock Analyses
Sampled by MDAG on Feb 7'07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Whole Rock K * (ppm)	$\begin{gathered} \text { ICP } \\ \text { K } \\ (\mathrm{ppm}) \end{gathered}$	Difference $(\%)^{3}$	Whole Rock Mg * (ppm)	$\begin{gathered} \mathrm{ICP} \\ \mathrm{Mg} \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	Whole Rock Mn * (ppm)	$\begin{gathered} \mathrm{ICP} \\ \mathrm{Mn} \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$
13448	13800	2.62	21349	23100	8.20	387	402	3.81
		13.7			13.5			93.7
		-3			-7.5			0.07
		3.79			5.46			17.4
		3.41			4.3			13.8
		-0.44			0.32			5.99
		1.69			2.58			10.4
		3.44			6.16			16
		5.62			8.75			20.8
		8.72			10.6			27.9
		3.93			6.17			10.4
		11.6			18.5			192
		0.37			-0.65			3.24
		0.9			0.79			0.8
		59			59			59

Whole Rock $\mathrm{Na}{ }^{*}$ (ppm)	ICP Na (ppm)	Difference $(\%)^{3}$
28858	32500	12.62
		18.4
		-0.29
		11.8
		3.98
		6.94
		8.79
		12.8
		14.7
		5.92
		15.8
		-0.85

Whole Rock P^{\star} (ppm)	ICP P	Difference (ppm)
$(\%)^{3}$		
1091	1250	14.58
		23.4
		-2.09
		13.1
		8.94
		11.7
		13.5
		17.4
		17.3
		3.73
		15.6
		-0.86
		0.3

${ }^{1}$ Interquartile Range $(I Q R)=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
${ }^{2}$ Coefficient of Variation (CoV) = standard deviation divided by mean
${ }^{3}$ Difference (\%) = (ICP - Whole Rock) * 100 / Whole Rock

* Element calculated from Whole Rock XRF analysis

K (Whole Rock) $=\left(\mathrm{K}_{2} \mathrm{O} * 2 * 10000 * 39.09\right) /(39.09 * 2+16)$
Mg (Whole Rock) $=\left(\mathrm{MgO}^{*} 10000 * 24.31\right) /(24.31+16)$
Mn (Whole Rock) $=\left(\mathrm{MnO}^{*} 10000 * 54.94\right) /(54.94+16)$
Na (Whole Rock) $=\left(\mathrm{Na}_{2} \mathrm{O} * 2 * 10000 * 22.99\right) /(22.99 * 2+16)$
P (Whole Rock) $=\left(\mathrm{P}_{2} \mathrm{O} 5^{*} 2^{*} 10000 * 30.97\right) /(2 * 30.97+5 * 16)$

Project
Client
Comments:

Schaft Creek
Copper Fox Metals Inc.
QA/QC Data - Comparison on ICP Metals and Whole Rock Analyses
Sampled by MDAG on Feb 7'07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Sample Id.	Whole Rock Si * (ppm)	$\begin{gathered} \text { ICP } \\ \text { Si } \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	Whole Rock Sr * (ppm)	$\begin{gathered} \text { ICP } \\ \mathrm{Sr} \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	$\begin{gathered} \text { Leco } \\ \mathrm{S}(\mathrm{Total})^{\star \star} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { ICP } \\ \mathrm{S} \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	Whole Rock Ti * (ppm)	$\begin{gathered} \text { ICP } \\ \text { Ti } \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$
14018	294129			423	428	1.23	8000	8800	10.00	2518	2400	-4.68
14021	303993			169	173	2.30	6200	7000	12.90	2158	2080	-3.62
14036	303338			254	235	-7.36	14700	16000	8.84	2278	1970	-13.52
14043	302637			254	276	8.80	2600	2800	7.69	2458	2190	-10.90
14060	271971			423	423	0.05	13100	14800	12.98	4376	4100	-6.31
14067	269681			338	410	21.22	4000	4300	7.50	4196	4170	-0.63
14076	259724			338	365	7.91	7700	9500	23.38	4316	4540	5.18
14083	249346			169	232	37.18	14600	16000	9.59	4436	4480	0.99
14099	297822			85	88	4.07	3400	3600	5.88	1858	1670	-10.14
14103	287725			169	198	16.78	6900	7700	11.59	2458	2220	-9.68
14130	281180			254	288	13.53	2900	3200	10.34	3177	2800	-11.88
14144	251496			338	343	1.41	2600	2800	7.69	3777	3760	-0.45
14148	243082			254	223	-12.09	1400	1400	0.00	3837	3780	-1.48
14156	303666			254	259	2.10	1700	1700	0.00	1739	1900	9.29
14162	234714			169	239	41.32	1300	1500	15.38	4137	4270	3.23
14169	312781			169	207	22.40	3000	3200	6.67	1858	1960	5.46
14232	264352			338	345	2.00	1500	1600	6.67	3657	3290	-10.03
14250	242661			338	424	25.36	1900	2000	5.26	4496	4350	-3.25
14260	255330			338	402	18.85	3400	3700	8.82	4316	4050	-6.17
14276	252759			676	798	17.97	1700	1700	0.00	4017	4100	2.08
14295	250234			254	336	32.45	4400	4900	11.36	4376	4240	-3.12
14301	256452			169	209	23.58	3400	3500	2.94	4196	3620	-13.74
14323	255470			338	391	15.60	1500	1500	0.00	3357	3310	-1.41
14332	253179			338	355	4.96	2600	2700	3.85	3597	3260	-9.37
14345	268793			254	274	8.01	5200	5600	7.69	3477	2970	-14.58
14348	256966			254	276	8.80	4400	4800	9.09	3657	3190	-12.77
14797	241867			254	234	-7.76	800	700	-12.50	4196	4150	-1.11
14808	245980			169	221	30.68	1800	1900	5.56	3357	3260	-2.90
14816	249346			254	285	12.35	4600	4700	2.17	3897	3810	-2.23
14828	242474			338	404	19.44	1300	1400	7.69	3777	3940	4.32
14844	246775			254	265	4.46	2100	2200	4.76	5575	5590	0.26
14680	249346			338	348	2.89	2200	2200	0.00	4017	4040	0.58
14871	250234			338	405	19.74	3700	3800	2.70	4916	4990	1.51
14887	236351			338	424	25.36	4400	5400	22.73	4736	4960	4.73
14689	309696			169	141	-16.63	6800	7900	16.18	1978	1580	-20.14
14695	249533			169	226	33.63	1400	1600	14.29	4077	4310	5.73
14742	256498			254	302	19.05	1900	2100	10.53	5156	4690	-9.03
14666	248738			338	416	22.99	3200	3800	18.75	5036	5070	0.68
14685	233125			338	393	16.19	17900	21000	17.32	8273	7690	-7.05
14685B	235603			338	374	10.57	19500	20400	4.62	8273	7930	-4.15
14545	262996			338	409	20.92	1900	1900	0.00	3897	3980	2.14
14565	251730			254	259	2.10	2300	2600	13.04	3777	3800	0.61
14571	280246			338	312	-7.76	10400	11100	6.73	3537	3170	-10.38
14578	252478			254	324	27.72	18200	21300	17.03	5156	4630	-10.20
14578B	254628			254	330	30.09	19300	21100	9.33	4916	4430	-9.88
14598	247476			507	569	12.15	1300	1500	15.38	4436	4330	-2.40
14893	235696			338	379	12.05	1100	1100	0.00	5995	6030	0.58
14899	228824			338	366	8.21	200	200	0.00	5815	5850	0.60
14908	247383			423	479	13.29	800	900	12.50	5815	5910	1.63
14917	278656			254	309	21.81	1900	1900	0.00	4796	4580	-4.50
14925	253647			338	353	4.37	1400	1500	7.14	5276	5090	-3.52
14998	251309			338	412	21.81	1300	1300	0.00	4316	4460	3.33
15862	247149			254	327	28.90	800	800	0.00	4077	4050	-0.65
15870	254348			254	234	-7.76	1300	1400	7.69	4436	4460	0.53
15879	237098			338	373	10.28	1200	1200	0.00	5395	5450	1.01
15887	254441			338	402	18.85	3100	3300	6.45	5156	5100	-1.08
15891	240184			338	382	12.94	1400	1400	0.00	5156	4920	-4.57
15908	250001			254	288	13.53	2200	2200	0.00	4856	4740	-2.39

Project:

Comments:

Schaft Creek
Copper Fox Metals Inc.
QA/QC Data - Comparison on ICP Metals and Whole Rock Analyses
Sampled by MDAG on Feb 7 '07.
For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

Sample Id.	Whole Rock Si * (ppm)	$\begin{gathered} \text { ICP } \\ \mathrm{Si} \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	Whole Rock Sr * (ppm)	$\begin{gathered} \text { ICP } \\ \mathrm{Sr} \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	$\begin{gathered} \text { Leco } \\ \mathrm{S}\left(\text { Total) }{ }^{* *}\right. \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \text { ICP } \\ \mathrm{S} \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$	Whole Rock Ti * (ppm)	$\begin{gathered} \text { ICP } \\ \text { Ti } \\ (\mathrm{ppm}) \end{gathered}$	Difference (\%) ${ }^{3}$
15911	246822			338	335	-0.96	900	900	0.00	5455	5430	-0.47
Maximum			NA			41.3			23.4			9.29
Minimum			NA			-16.6			-12.5			-20.1
Mean			NA			12.8			7.05			-3.22
Standard Deviation			NA			12.6			6.66			6.05
10 Percentile			NA			-2.24			0			-11.1
25 Percentile			NA			3.48			0			-8.04
Median			NA			12.9			7.14			-2.23
75 Percentile			NA			21.5			10.9			0.65
90 Percentile			NA			29.1			15.5			3.53
Interquartile Range (IQR) ${ }^{1}$			NA			18			10.9			8.69
Variance			NA			159			44.4			36.6
Skewness			NA			-0.061			0.13			-0.52
Coefficient of Variation (CoV) ${ }^{2}$			NA			0.99			0.94			-1.88
Count			0			59			59			59

${ }^{1}$ Interquartile Range (IQR) $=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
${ }^{2}$ Coefficient of Variation (CoV) = standard deviation divided by mean
${ }^{3}$ Difference (\%) = (ICP - Whole Rock) * 100 / Whole Rock

* Element calculated from Whole Rock XRF analysis
$\mathrm{Si}($ Whole Rock $)=\left(\mathrm{SiO}_{2}{ }^{*} 10000 * 28.09\right) /(28.09+2 \star 16)$ $\mathrm{Sr}($ Whole Rock $)=\left(\mathrm{SrO}^{*} 10000 * 87.62\right) /(87.62+16)$
Ti (Whole Rock) $=\left(\mathrm{TiO}_{2}{ }^{* 10000 * 47.9) /(47.9+2 \star 16)}\right.$
**S (Total) $=$ S (Leco \%) * 10000

Sample Id.	Carbonate Leach S (Sulphate) (\%)	HCI Leachable S (Sulphate) (\%)	$\begin{gathered} \text { RPD } \\ (\%) \end{gathered}$	S (Sulphide) (\% Leco)	\%S(Sulphide) Calculated from Carbonate Leach S (Sulphate) (\%)	$\begin{gathered} \text { RPD } \\ (\%) \end{gathered}$	S (Sulphide) (\% Leco)	\%S(Sulphide) Calculated from HCI Leachable S (Sulphate) (\%)	RPD (\%)	(\% Leco/Calc)/ S (Sulphide)/ S (Total)*100 (\%)	Carbonate Leach S (Sulphate)/ S (Total)*100 (\%)	HCl Leachable S (Sulphate)/ S (Total)*100 (\%)	$\begin{gathered} \text { S(BaSO4)/ } \\ \text { S (Total)*100 } \end{gathered}$ (\%)
14018	0.02	0.005	120.00	0.69	0.78	12.24	0.69	0.795	14.14	86.25	2.50	0.63	3.40
14021	0.03	0.005	142.86	0.6	0.59	1.68	0.6	0.615	2.47	96.77	4.84	0.81	1.69
14036	0.02	0.005	120.00	1.39	1.45	4.23	1.39	1.465	5.25	94.56	1.36	0.34	0.85
14043	0.02	0.005	120.00	0.22	0.24	8.70	0.22	0.255	14.74	84.62	7.69	1.92	2.41
14060	0.74	0.71	4.14	0.62	0.57	8.40	0.62	0.6	3.28	47.33	56.49	54.20	0.64
14067	0.01	0.005	66.67	0.41	0.39	5.00	0.41	0.395	3.73	102.50	2.50	1.25	2.09
14076	0.01	0.005	66.67	0.76	0.76	0.00	0.76	0.765	0.66	98.70	1.30	0.65	1.36
14083	0.03	0.005	142.86	1.35	1.43	5.76	1.35	1.455	7.49	92.47	2.05	0.34	1.15
14099	0.03	0.005	142.86	0.28	0.31	10.17	0.28	0.335	17.89	82.35	8.82	1.47	6.15
14103	0.45	0.42	6.90	0.25	0.24	4.08	0.25	0.27	7.69	36.23	65.22	60.87	0.91
14130	0.03	0.005	142.86	0.29	0.26	10.91	0.29	0.285	1.74	100.00	10.34	1.72	4.33
14144	0.02	0.005	120.00	0.2	0.24	18.18	0.2	0.255	24.18	76.92	7.69	1.92	3.22
14148	0.02	0.005	120.00	0.04	0.12	100.00	0.04	0.135	108.57	28.57	14.29	3.57	10.45
14156	0.04	0.005	155.56	0.14	0.13	7.41	0.14	0.165	16.39	82.35	23.53	2.94	3.69
14162	0.02	0.005	120.00	0.12	0.11	8.70	0.12	0.125	4.08	92.31	15.38	3.85	9.65
14169	0.01	0.005	66.67	0.29	0.29	0.00	0.29	0.295	1.71	96.67	3.33	1.67	0.70
14232	0.005	0.005	0.00	0.14	0.145	3.51	0.14	0.145	3.51	93.33	3.33	3.33	2.79
14250	0.01	0.005	66.67	0.19	0.18	5.41	0.19	0.185	2.67	100.00	5.26	2.63	2.20
14260	0.01	0.005	66.67	0.34	0.33	2.99	0.34	0.335	1.48	100.00	2.94	1.47	1.23
14276	0.01	0.005	66.67	0.14	0.16	13.33	0.14	0.165	16.39	82.35	5.88	2.94	14.76
14295	0.005	0.005	0.00	0.41	0.435	5.92	0.41	0.435	5.92	93.18	1.14	1.14	0.48
14301	0.01	0.005	66.67	0.32	0.33	3.08	0.32	0.335	4.58	94.12	2.94	1.47	1.84
14323	0.005	0.005	0.00	0.13	0.145	10.91	0.13	0.145	10.91	86.67	3.33	3.33	4.18
14332	0.01	0.005	66.67	0.26	0.25	3.92	0.26	0.255	1.94	100.00	3.85	1.92	1.61
14345	0.005	0.005	0.00	0.52	0.515	0.97	0.52	0.515	0.97	100.00	0.96	0.96	0.80
14348	0.01	0.005	66.67	0.45	0.43	4.55	0.45	0.435	3.39	102.27	2.27	1.14	0.95
14797	0.005	0.005	0.00	0.05	0.075	40.00	0.05	0.075	40.00	62.50	6.25	6.25	5.23
14808	0.005	0.005	0.00	0.16	0.175	8.96	0.16	0.175	8.96	88.89	2.78	2.78	2.32
14816	0.005	0.01	66.67	0.46	0.455	1.09	0.46	0.45	2.20	100.00	1.09	2.17	0.91
14828	0.02	0.005	120.00	0.1	0.11	9.52	0.1	0.125	22.22	76.92	15.38	3.85	12.87
14844	0.005	0.01	66.67	0.2	0.205	2.47	0.2	0.2	0.00	95.24	2.38	4.76	3.98
14680	0.01	0.005	66.67	0.2	0.21	4.88	0.2	0.215	7.23	90.91	4.55	2.27	2.85
14871	0.02	0.005	120.00	0.32	0.35	8.96	0.32	0.365	13.14	86.49	5.41	1.35	0.57
14887	0.01	0.03	100.00	0.42	0.43	2.35	0.42	0.41	2.41	95.45	2.27	6.82	1.90
14689	0.01	0.005	66.67	0.69	0.67	2.94	0.69	0.675	2.20	101.47	1.47	0.74	0.31
14695	0.005	0.005	0.00	0.13	0.135	3.77	0.13	0.135	3.77	92.86	3.57	3.57	2.99
14742	0.005	0.005	0.00	0.19	0.185	2.67	0.19	0.185	2.67	100.00	2.63	2.63	2.20
14666	0.01	0.005	66.67	0.31	0.31	0.00	0.31	0.315	1.60	96.88	3.13	1.56	2.61
14685	0.01	0.005	66.67	1.8	1.78	1.12	1.8	1.785	0.84	100.56	0.56	0.28	0.58
14685B	0.01	0.005	66.67	1.8	1.94	7.49	1.8	1.945	7.74	92.31	0.51	0.26	0.43
14545	0.01	0.005	66.67	0.13	0.18	32.26	0.13	0.185	34.92	68.42	5.26	2.63	11.00
14565	0.005	0.005	0.00	0.24	0.225	6.45	0.24	0.225	6.45	104.35	2.17	2.17	1.82
14571	0.02	0.005	120.00	1.03	1.02	0.98	1.03	1.035	0.48	99.04	1.92	0.48	1.01
14578	0.02	0.005	120.00	1.82	1.8	1.10	1.82	1.815	0.28	100.00	1.10	0.27	0.80
14578B	0.03	0.005	142.86	1.91	1.9	0.52	1.91	1.925	0.78	98.96	1.55	0.26	0.97
14598	0.01	0.005	66.67	0.13	0.12	8.00	0.13	0.125	3.92	100.00	7.69	3.85	3.22
14893	0.005	0.04	155.56	0.08	0.105	27.03	0.08	0.07	13.33	72.73	4.55	36.36	9.50
14899	0.005	0.005	0.00	0.02	0.015	28.57	0.02	0.015	28.57	100.00	25.00	25.00	41.82
14908	0.005	0.005	0.00	0.07	0.075	6.90	0.07	0.075	6.90	87.50	6.25	6.25	20.91
14917	0.005	0.005	0.00	0.16	0.185	14.49	0.16	0.185	14.49	84.21	2.63	2.63	9.90
14925	0.005	0.005	0.00	0.12	0.135	11.76	0.12	0.135	11.76	85.71	3.57	3.57	5.97
14998	0.005	0.005	0.00	0.12	0.125	4.08	0.12	0.125	4.08	92.31	3.85	3.85	4.82
15862	0.005	0.005	0.00	0.03	0.075	85.71	0.03	0.075	85.71	37.50	6.25	6.25	7.84
15870	0.02	0.005	120.00	0.09	0.11	20.00	0.09	0.125	32.56	69.23	15.38	3.85	19.30
15879	0.02	0.005	120.00	0.09	0.1	10.53	0.09	0.115	24.39	75.00	16.67	4.17	15.68
15887	0.01	0.005	66.67	0.29	0.3	3.39	0.29	0.305	5.04	93.55	3.23	1.61	3.37
15891	0.02	0.005	120.00	0.09	0.12	28.57	0.09	0.135	40.00	64.29	14.29	3.57	22.40
15908	0.02	0.005	120.00	0.2	0.2	0.00	0.2	0.215	7.23	90.91	9.09	2.27	2.85

Sampled by MDAG on Feb 7 '07.

Carbonate Leach S (Sulphate) (\%)	HCl Leachable S (Sulphate) (\%)	RPD (\%)	S (Sulphide) (\% Leco)	\%S(Sulphide) Calculated from Carbonate Leach S (Sulphate) (\%)	RPD (\%)	S (Sulphide) (\% Leco)	\%S(Sulphide) Calculated from HCl Leachable S (Sulphate) (\%)	RPD (\%)	(\% Leco/Calc)/ S (Sulphide)/ S (Total)*100 (\%)	Carbonate Leach S (Sulphate)/ S (Total)*100 (\%)	HCl Leachable S (Sulphate)/ S (Total)*100 (\%)	$\begin{gathered} \text { S(BaSO4)/ } \\ \text { S (Total)*100 } \end{gathered}$ (\%)
0.01	0.005	66.67	0.07	0.08	13.33	0.07	0.085	19.35	77.78	11.11	5.56	11.62
		156			100			109	104.00	65.20	60.90	41.80
		0			0			1.4E-14	28.60	0.51	0.26	0.31
		70.3			11.2			12.6	87	7.67	5.29	5.39
		52.4			17.7			19	16.9	11.5	11.3	7.2
		0			0.97			0.94	67.6	1.27	0.45	0.69
		2.07			2.96			2.44	82.4	2.33	1.3	1.08
		66.7			5.92			5.92	92.5	3.57	2.27	2.79
		120			10.9			14.6	99.5	7.69	3.85	6.06
		143			27.3			29.4	100	15.4	6.25	13.2
		118			7.95			12.2	17.2	5.37	2.55	4.99
		2743			312			362	287	131	128	51.9
		-0.11			3.71			3.4	-1.87	3.72	3.99	2.89
		0.74			1.58			1.51	0.19	1.49	2.14	1.34
		59			59			59	59	59	59	59

Comments:

Schaft Creek
Copper Fox Metals Inc.
QA/QC Data - Sulphur and NP Species
Sampled by MDAG on Feb $7^{\prime} 07$.

$\begin{gathered} \text { Ratio } \\ \text { NP / } \\ \text { Inorganic CaNP } \end{gathered}$	Ratio NP / (Ca) CaNP	$\begin{gathered} \text { Ratio } \\ \mathrm{NP} / \\ (\mathrm{Ca}+\mathrm{Mg}) \mathrm{CaNP} \end{gathered}$	Ratio Inorganic CaNP / (Ca) CaNP	Ratio Inorganic CaNP (Ca+Mg) CaNP
1.32	0.94	0.47	0.72	0.36
1.08	0.98	0.62	0.90	0.57
1.20	1.07	0.59	0.89	0.49
2.20	1.14	0.35	0.52	0.16
1.80	0.52	0.25	0.29	0.14
1.66	0.76	0.28	0.46	0.17
1.12	0.61	0.31	0.55	0.28
1.08	0.74	0.43	0.68	0.39
1.01	1.06	0.73	1.05	0.72
1.17	1.16	0.67	0.99	0.58
0.91	1.39	0.85	1.53	0.93
1.02	1.24	0.82	1.21	0.80
1.07	1.47	0.88	1.38	0.82
1.00	1.18	0.77	1.18	0.77
1.15	1.57	0.88	1.37	0.77
1.13	1.10	0.86	0.98	0.76
1.22	1.34	0.86	1.10	0.70
1.27	1.16	0.66	0.92	0.52
1.19	1.32	0.75	1.11	0.63
2.30	0.44	0.27	0.19	0.12
1.39	1.14	0.69	0.82	0.49
1.05	1.49	0.95	1.42	0.91
1.04	0.78	0.55	0.75	0.53
1.55	1.12	0.75	0.73	0.48
2.17	1.24	0.74	0.57	0.34
1.18	1.10	0.57	0.93	0.48
1.08	1.32	0.80	1.23	0.74
0.93	1.41	0.91	1.51	0.98
5.85	1.60	0.87	0.27	0.15
1.01	1.32	0.78	1.30	0.77
1.94	1.06	0.33	0.55	0.17
1.18	0.99	0.60	0.84	0.50
1.43	1.04	0.54	0.72	0.37
1.22	0.92	0.52	0.76	0.42
0.97	0.97	0.68	1.00	0.70
1.04	1.15	0.71	1.10	0.68
1.27	1.21	0.52	0.95	0.41
1.53	0.96	0.50	0.63	0.33
1.49	1.35	0.57	0.91	0.38
1.45	1.38	0.54	0.96	0.37
1.54	0.81	0.50	0.52	0.33
1.27	1.19	0.83	0.93	0.65
1.19	1.18	0.67	0.98	0.56
1.06	1.06	0.72	1.00	0.68
1.07	1.13	0.76	1.05	0.71
1.61	0.92	0.44	0.57	0.27
1.28	1.07	0.51	0.83	0.40
1.48	0.92	0.31	0.62	0.21
1.57	0.79	0.39	0.50	0.25
1.45	1.14	0.50	0.79	0.34
1.34	0.91	0.47	0.68	0.35
1.19	1.04	0.62	0.87	0.52
1.17	1.23	0.73	1.06	0.63
1.05	1.30	0.80	1.24	0.76
1.08	0.98	0.60	0.91	0.55
1.27	0.92	0.56	0.73	0.45
1.10	1.00	0.64	0.91	0.58
1.21	1.07	0.64	0.89	0.53

Project:
Client:
Data:
Comments:
chaft Creek
Copper Fox Metals Inc.
QA/QC Data - Sulphur and NP Species
Sampled by MDAG on Feb 7'07.

Sample Id.	$\begin{gathered} \text { Ratio } \\ \text { NP / } \\ \text { Inorganic CaNP } \end{gathered}$	Ratio NP / (Ca) CaNP	$\begin{gathered} \text { Ratio } \\ \mathrm{NP} / \\ (\mathrm{Ca}+\mathrm{Mg}) \mathrm{CaNP} \end{gathered}$	Ratio Inorganic CaNP / (Ca) CaNP	Ratio Inorganic CaNP (Ca+Mg) CaNP
15911	1.35	1.05	0.50	0.78	0.37
Maximum	5.85	1.60	0.95	1.53	0.98
Minimum	0.91	0.44	0.25	0.19	0.12
Mean	1.37	1.09	0.62	0.88	0.51
Standard Deviation	0.67	0.24	0.18	0.3	0.22
10 Percentile	1.02	0.79	0.35	0.52	0.2
25 Percentile	1.08	0.97	0.5	0.7	0.36
Median	1.2	1.1	0.62	0.9	0.5
75 Percentile	1.45	1.24	0.76	1.05	0.69
90 Percentile	1.69	1.39	0.86	1.25	0.77
Interquartile Range (IQR) ${ }^{1}$	0.37	0.27	0.25	0.35	0.33
Variance	0.45	0.056	0.033	0.088	0.047
Skewness	5.47	-0.33	-0.24	0.039	0.089
Coefficient of Variation (CoV) ${ }^{2}$	0.49	0.22	0.29	0.34	0.43
Count	59	59	59	59	59

[^0]: ${ }^{1}$ Interquartile Range (IQR) $=75^{\text {th }}$ percentile minus $25^{\text {th }}$ percentile
 ${ }^{2}$ Coefficient of Variation (CoV) = standard deviation divided by mean
 NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.
 Total CaNP $=\% \mathrm{C} * 10 * 100.09 / 12.01$
 Inorganic CaNP $=\% \mathrm{CO}_{2}$ * 10 * 100.09 / 44.01
 (Ca) CaNP $=(\mathrm{Ca}(\mathrm{ppm}) * 100.09 / 40.08) / 1000$
 $(\mathrm{Ca}+\mathrm{Mg}) \mathrm{CaNP}=((\mathrm{Ca}(\mathrm{ppm}) * 100.09 / 40.08)+(\mathrm{Mg}(\mathrm{ppm}) * 100.09 / 24.31)) / 1000$
 TNNP = NP - TAP
 Adjusted TNNP = Available NP - TAP
 SNNP = NP - SAP
 Adjusted SNNP = Available NP - SAP
 PNNP = NP - PAP
 Adjusted PNNP = Available NP - PAP

[^1]: Difference

