# Schaft Creek Project -Prediction of Metal Leaching and Acid Rock Drainage, Phase 1

prepared for:

Rescan Environmental Services Ltd. Attn: Mr. Shane Uren Sixth Floor, 1111 West Hastings Street. Vancouver, British Columbia V6E 2J3

prepared by:



Kevin A. Morin, Ph.D., P.Geo., L.Hydrogeo. Nora M. Hutt, A.Sc.T, c.C.T. Minesite Drainage Assessment Group A Division of Morwijk Enterprises Ltd. 8035 Redtail Court, Surrey, British Columbia V3W 0N4

August 10, 2007

#### P.Geo. and A.Sc.T. Notice

This study is based on detailed technical information interpreted through standard and advanced chemical and geoscientific techniques available at this time. As with all geoscientific investigations, the findings are based on data collected at discrete points in time and location. In portions of this report, it has been necessary to infer information between and beyond the measured data points using established techniques and scientific judgement. In our opinion, this report contains the appropriate level of geoscientific information to reach the conclusions stated herein.

This study has been conducted in accordance with British Columbia provincial legislation as stated in the Engineers and Geoscientists Act and in the Applied Science Technologists and Technicians Act.

> Kevin A. Morin, Ph.D., P.Geo. Registration No. 18,721 Association of Professional Engineers and Geoscientists

Nora M. Hutt, A.Sc.T., c.C.T. Registration No. 10700 Association of Applied Science Technologists and Technicians

# **TABLE OF CONTENTS**

| P.Geo. and A.Sc.T. Notice                                                                                                                                                                                                                                                                                                           | . i                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| List of Tables i                                                                                                                                                                                                                                                                                                                    | iii                                                |
| List of Figures i                                                                                                                                                                                                                                                                                                                   | iii                                                |
| Executive Summary                                                                                                                                                                                                                                                                                                                   | . v                                                |
| Report Summary                                                                                                                                                                                                                                                                                                                      | vi                                                 |
| 1. INTRODUCTION                                                                                                                                                                                                                                                                                                                     | . 1                                                |
| 2. GENERAL INFORMATION AND PREVIOUS ML-ARD-RELATED STUDIES   2.1 Location and History   2.2 Geology   2.3 Past ML-ARD-Related Work   2.4 Important ML-ARD Observations from Previous Studies                                                                                                                                        | 2<br>2<br>3<br>5<br>7                              |
| 3. SAMPLING AND ANALYSIS   3.1 Sample Selection and Collection   3.2 Sample Analysis                                                                                                                                                                                                                                                | 8<br>8<br>10                                       |
| 4. RESULTS OF GEOCHEMICAL STATIC TESTS 1   4.1 Acid-Base Accounting 1   4.1.1 Paste pH 1   4.1.2 Sulphur Species and Acid Potentials 1   4.1.3 Neutralization Potentials 1   4.1.4 Net Balances of Acid-Generating and Acid-Neutralizing Capacities 2   4.1.5 Spatial Distribution of Net Balances 2   4.2 Total-Element Analyses 2 | 12<br>12<br>12<br>12<br>12<br>16<br>22<br>23<br>27 |
| 5. CONCLUSION AND RECOMMENDATIONS                                                                                                                                                                                                                                                                                                   | 31                                                 |
| 6. REFERENCES                                                                                                                                                                                                                                                                                                                       | 35                                                 |
| APPENDIX A. Notes on the Collection of Phase 1 ML-ARD Samples by MDAG,<br>February 2007                                                                                                                                                                                                                                             | 36                                                 |
| APPENDIX B. Compiled Acid-Base Accounting and Total-Element Analyses for Rock<br>at the Schaft Creek Project                                                                                                                                                                                                                        | 42                                                 |

# List of Tables

| 2-1.         | Statistical Results of Previous Acid-Base Accounting for Sixteen Samples                                    |
|--------------|-------------------------------------------------------------------------------------------------------------|
| 3-1.<br>3-2. | Important Rock Units and Their Observed Abundances in 2005 Drill Core                                       |
| 4-1.         | Summary of Net-Acid-Generating, Uncertain, and Net-Neutralizing Percentages of Samples from 2005 Drill Core |

# List of Figures

| 4-1. | Paste pH vs. Total Sulphur in the 59 Schaft Creek Rock Samples                           | 13 |
|------|------------------------------------------------------------------------------------------|----|
| 4-2. | Sulphide vs. Total Sulphur in the 59 Schaft Creek Rock Samples                           | 13 |
| 4-3. | HCl-Leachable Sulphate vs. Total Sulphur in the 59 Schaft Creek Rock Samples             | 14 |
| 4-4. | Sulphur Mass Imbalance vs. Total Sulphur in the 59 Schaft Creek Rock Samples             | 14 |
| 4-5. | Calculated Pyrite-Bound Sulphide vs. Copper-Bound Sulphide as Chalcopyrite               |    |
|      | and CuS <sub>2</sub> in the 59 Schaft Creek Rock Samples                                 | 17 |
| 4-6. | Pyrite-Calculated Acid Potential (PAP) vs. Sulphide-Based Acid Potential (SAP)           |    |
|      | in the 59 Schaft Creek Rock Samples                                                      | 17 |
| 4-7. | Paste pH vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples          | 18 |
| 4-8. | Inorganic-Carbon-Based Neutralization Potential vs. Sobek Neutralization Potential       |    |
|      | in the 59 Schaft Creek Rock Samples                                                      | 18 |
| 4-9. | Calcium-Based Neutralization Potential vs. Inorganic-Carbon-Based Neutralization         |    |
|      | Potential in the 59 Schaft Creek Rock Samples                                            | 20 |
| 4-10 | . Calcium-Magnesium-Based Neutralization Potential vs. Inorganic-Carbon-Based            |    |
|      | Neutralization Potential in the 59 Schaft Creek Rock Samples                             | 20 |
| 4-11 | . Calcium-Based Neutralization Potential vs. Sobek Neutralization Potential              |    |
|      | in the 59 Schaft Creek Rock Samples                                                      | 21 |
| 4-12 | . Calcium-Magnesium-Based Neutralization Potential vs. Sobek Neutralization Potential    |    |
|      | in the 59 Schaft Creek Rock Samples                                                      | 21 |
| 4-13 | . Worst-Case Adjusted Sulphide-Based Net Potential Ratio vs. Sulphide in the 59          |    |
|      | Schaft Creek Rock Samples                                                                | 24 |
| 4-14 | . Worst–Case Adjusted Sulphide-Based Net Potential Ratio vs. Sobek Neutralization        |    |
|      | Potential in the 59 Schaft Creek Rock Samples                                            | 24 |
| 4-15 | . Best–Case Adjusted Pyrite-Calculated Net Potential Ratio vs. Sulphide in the 59 Schaft |    |
|      | Creek Rock Samples                                                                       | 25 |
| 4-16 | . Best–Case Adjusted Pyrite-Calculated Net Potential Ratio vs. Sobek Neutralization      |    |
|      | Potential in the 59 Schaft Creek Rock Samples                                            | 25 |

| 4-17. | General East-West Vertical Cross-Section through the Schaft Creek Deposit, Showing |      |
|-------|------------------------------------------------------------------------------------|------|
|       | Worst-Case Adjusted Sulphide-Based Net Potential Ratio                             | . 28 |
| 4-18. | General North-South Vertical Cross-Section through the Schaft Creek Deposit,       |      |
|       | Showing Worst-Case Adjusted Sulphide-Based Net Potential Ratio                     | . 29 |

# **Executive Summary**

This first-phase report predicts metal leaching (ML) and acid rock drainage (ARD) at Copper Fox Metal's Schaft Creek Project. As specified in the British Columbia Policy, Guidelines, and draft Prediction Manual, ML-ARD predictions are being developed in phases, with each phase focussing on resolving uncertainties identified in earlier phases. It is too early at this stage to reach any major or clear conclusions about ML-ARD potential.

In this first phase of ML-ARD testing, 59 samples of core rejects from the 2005 drilling program were submitted for expanded Sobek (EPA 600) acid-base accounting and for total-element analyses. Some major observations were:

- Previous observations of weathered core reported little evidence of oxidation and reaction.
- Schaft Creek rock contains abundant aluminosilicate minerals, which can provide some neutralization in addition to carbonate minerals.
- Based on the 59 core samples and generic criteria, only 0-2% of the samples were net acid generating and 5-14% were currently "uncertain", and thus most samples were net neutralizing. Additional testwork is needed to resolve the ARD status of the uncertain samples, and to examine other portions of the deposit.
- Although up to 2% of samples were net acid generating, none were acidic at the time of analysis, and years to decades may have to pass before they became acidic.
- Compared to general crustal abundances, the 59 samples were frequently elevated in silver, bismuth, copper, molybdenum, and selenium, and occasionally elevated in sulphur, antimony, and tungsten. However, solid-phase levels do not typically reflect leaching rates into water, so additional testwork is needed on metal leaching.

Recommendations were offered to improve the accuracy and to reduce the uncertainty in the current ML-ARD predictions for the Schaft Creek Project.

## **Report Summary**

Whenever mined rock is exposed to air and moisture, the rates of weathering, oxidation, and leaching can accelerate. If sulphide minerals like pyrite are exposed, the oxidation will release acidity, some metals, sulphate, and heat. If the acidity is not neutralized by minerals like calcite or feldspar in the rock, the resulting acidic water is called "acid rock drainage" (ARD) in British Columbia. Whether sulphide minerals are present or not, weathering can still lead to accelerated metal leaching (ML). For example, the simple dissolution of carbonate minerals can release metals like manganese.

The provincial ML-ARD Policy, Guidelines, and draft Prediction Manual contain the recommendations and the expectations of the government for ML-ARD prediction and control. One recommendation is that ML-ARD studies are carried out in phases, with each phase focussing on the uncertainties identified in the previous ones.

This report contains the first phase of ML-ARD studies for the Schaft Creek Project. Previous relevant information was compiled. Also, 59 samples of core rejects, from 11 holes drilled in 2005, were collected from cold storage. This set included two duplicates for QA/QC checks. All 59 samples were analyzed for expanded Sobek (EPA 600) acid-base accounting, and for total-element contents using ICP-MS after four-acid digestion and using x-ray fluorescence whole rock.

## Previous Information

The compilation of existing information relevant to ML-ARD led to the following important observations.

- The Schaft Creek copper-gold-molybdenum deposit is widely acknowledged as a porphyry copper deposit. It contains three mineral zones: the Liard, West Breccia, and Paramount Zones.
- During an examination of existing core, "It has been noted that the core from previous drilling programs, which is stored on site, exhibits a remarkable degree of preservation with limited visible weathering." Thus, the oxidation rate of Schaft Creek rock may be relatively slow.
- Based on 16 acid-base accounts from a previous, metallurgical study, all 16 samples were net acid neutralizing, with sulphide between 0.1 and 0.9%S, and Neutralization Potentials from 53 to 114 kg/t. Flotation recovery of sulphide reduced the sulphide levels in the synthetic tailings.
- Detailed mineralogy was examined in 18 thin sections, representing feldspar quartz porphyry (rock code PPFQ), tourmaline breccia, pneumatolytic breccia, and volcanics. Even one rock unit (PPFQ) was not entirely intrusive. Some PPFQ samples were porphyritic volcanics of felsic and intermediate composition (dacitic andesitic), and one sample was a fine grained, feldspathic intrusive rock classified as either syenite or anorthosite, depending on the composition of feldspar. Groundmass in these samples was generally around one-half of the

total, with the groundmass consisting of more than 90% feldspar, and accessory amounts of quartz, chlorite, sericite, carbonate, and opaques. Sulphide minerals were mostly disseminated and as veinlets and clusters, and mostly pyrite and chalcopyrite with less common molybdenite and bornite. Carbonate minerals, mostly reported as veins, patches, and groundmass, were not individually identified and were sometimes seen as feldspar replacement/alteration.

#### Results of Acid-Base Accounting (ABA)

As part of the ABA procedure, paste pH is measured in a mixture ("paste") of pulverized sample and deionized water. Paste pH in the 59 core samples for Schaft Creek ranged from 7.6 to 8.6. Thus, no samples were acidic at the time of analysis.

Total sulphur in the 59 Schaft Creek rock samples ranged from 0.02 to 1.91%S, with a mean of 0.45%S and a median of 0.26%S. In most samples, total sulphur and sulphide were similar, and thus the two parameters were typically interchangeable. Because a few samples did contain elevated leachable sulphate, sulphide is a better indicator of acid potential than total sulphur for Schaft Creek rock. However, in many samples, most sulphide was copper-bound sulphide (chalcopyrite) which may have less capacity to generate acidity. Therefore, each sample has a maximum "worst-case" Sulphide-Based Acid Potential (SAP) and a minimum "best-case" Pyrite-Calculated Acid Potential (PAP).

Sobek (EPA 600) Neutralization Potential (NP) ranged from 40 to 219 kg/t in the 59 Schaft Creek samples, with a mean of 97 and a median of 92 kg/t. These are relatively high values. They explain why no acidic paste pH values were detected, and suggest there could be a long lag time (years to decades) before these samples might become acidic. A certain amount of measured NP is typically "unavailable" for neutralization, and thus should be subtracted from measured values. The lack of acidic paste pH values precluded an initial estimate of Unavailable Neutralization Potential, so the common value of 10 kg/t is used here. NP was typically greater than inorganic carbonate in many samples, meaning NP also reflected the presence of non-carbonate aluminosilicate minerals. These minerals have been documented in Schaft Creek rock. Also, NP did not correlate well with solid-phase calcium plus magnesium levels, but some samples showed that calcium-bearing minerals could account for their NP levels.

Best-case and worst-case net balances of acid-generating and acid-neutralizing capacities were calculated for each of the 59 Schaft Creek samples. Overall, only 0-2% of the samples were net acid generating and 5-14% were "uncertain" based on generic criterion. Thus, most samples were net neutralizing. PPAU and PPFQ were the major rock units with uncertain samples, while net-acid-generating or uncertain samples were found in the minor rock units of ANDS, TOBR, BRIV, and DIOR.

To generally assess the spatial distribution of net balances, a general east-west cross-section showed the center area was net-neutralizing, while net-acid-generating and uncertain samples were found on the periphery. The general north-south cross-section showed uncertain samples were found in three adjacent holes. Based on this limited information, the net-acid-generating and uncertain samples may be spatially restricted in the Schaft Creek Deposit, but additional samples and geostatistical modelling are needed to confirm this.

## Results of Total-Element Analyses

Total-element levels in the 59 Schaft Creek samples were measured by ICP-MS analysis after strong four-acid digestion and by x-ray-fluorescence whole-rock analysis. The 59 samples of Schaft Creek core were predominantly composed of silicon and aluminum, reflecting the abundant aluminosilicate minerals. Calcium, iron, potassium, magnesium, sodium, and Loss on Ignition (LOI) were also relatively abundant. Compared to general crustal abundances, the 59 samples were frequently elevated in silver, bismuth, copper, molybdenum, and selenium, and occasionally elevated in sulphur, antimony, and tungsten. However, solid-phase levels do not typically reflect leaching rates into water, so additional testwork is needed on metal leaching. Only copper showed some correlation with sulphide, reflecting the copper-bound sulphide discussed under Acid-Base Accounting. For Sobek Neutralization Potential, calcium showed some correlation. Samples of some rock units, particularly tourmaline breccia (TOBR), stood out as a distinct group for some elements like gallium, phosphorus, thallium, tungsten, and uranium.

## Recommendations for Future ML-ARD Work

A phased approach, with each focussing on resolving uncertainties raised in previous ones, is recommended in the provincial ML-ARD Prediction Manual. Thus, based on the preceding initial information, we offer the following recommendations for the next phase of ML-ARD studies at the Schaft Creek Project.

- Overburden should be analyzed for ML-ARD potential. Up to several tens of meters of overburden have been reported in drillholes. This overburden in the pit area would be disturbed and oxidized during mining, and might be used for reclamation during and after operation.
- Unavailable Neutralization Potential (UNP) could not be reliably estimated from available data (Section 4.1.3), but affects net balances. Therefore, UNP should be determined better for Schaft Creek. This would likely require humidity cells (see below).
- Most samples with NPR < 2 were between 1.0 and 2.0, meaning their ARD potential is "uncertain" at this time (Section 4.1.5). This uncertain range should be resolved for proper planning of waste management and water management. Humidity cells would help with this (see next recommendation).
- Six laboratory-based kinetic tests, known as humidity cells, should be conducted for at least 40 weeks on 1-kg samples of Schaft Creek rock. These would provide bulk rates of acid generation, neutralization, and metal leaching, and would help in resolving UNP and "uncertain" samples (see above). Previous information on weathered core suggested reaction rates in Schaft Creek rock were low.

- Four on-site leach tests, each containing up to approximately one tonne of disturbed rock or broken core, should be set up at Schaft Creek and periodically sampled as part of routine on-site water-quality monitoring. These would provide on-site drainage-chemistry data and are important for upscaling the smaller-scale humidity cells.
- At this time, the net-acid-generating and "uncertain" samples may be clustered in portions of the deposit, which would focus waste management and any special handling onto specific zones. To examine this clustering further, additional core samples, including 2006 holes, should be collected from across the deposit and submitted for expanded acid-base accounting and total-element contents. The results would be used in geostatistical modelling (see next recommendation).
- Three-dimensional geostatistical modelling should be carried out to calculate total tonnages and year-by-year tonnages of net-acid-generating, currently "uncertain", and net-neutralizing rock. This is important for identifying the most cost-effective options for waste management and water management.

## **1. INTRODUCTION**

Whenever mined rock is exposed to air and moisture, the rates of weathering, oxidation, and leaching can accelerate. If sulphide minerals like pyrite are exposed, the oxidation will release acidity, some metals, sulphate, and heat. If the acidity is not neutralized by minerals like calcite or feldspar in the rock, the resulting acidic water is called "acid rock drainage" (ARD) in British Columbia.

Whether sulphide minerals are present or not, weathering can still lead to accelerated metal leaching (ML). For example, the simple dissolution of carbonate minerals can release metals like manganese.

ML-ARD is often associated with minesites, where it is well documented (e.g., Morin and Hutt, 1997 and 2001). As a result, the accurate prediction and control of ML-ARD at minesites in British Columbia are high priorities of the provincial government, as explained in its formal Policy, Guidelines, and draft Prediction Manual (Price and Errington, 1998; Price, 1998; Price et al., 1997). This report follows the recommendations of those documents.

Because the provincial documents recommend a phased approach, this report compiles and interprets the currently existing information related to ML-ARD at the Schaft Creek Project. General background information is provided in Chapter 2. The ML-ARD samples, and the static analyses applied to them, are described in Chapter 3. The analytical results are discussed in Chapter 4. Chapter 5 concludes with recommendations for the next phase of ML-ARD work, including additional testwork as discussed in the provincial Prediction Manual. All relevant data are compiled in the appendices.

1

## 2. GENERAL INFORMATION AND PREVIOUS ML-ARD-RELATED STUDIES

The information presented below has been extracted mostly from the Project Description (Copper Fox Metals Ltd., 2006), a resource estimate by Giroux and Ostensoe (2003), and the 2005 drilling report (Fischer and Hanych, 2006).

#### 2.1 Location and History

The Schaft Creek property is located in the mountainous terrain of northwestern British Columbia, approximately 1,000 km northwest of Vancouver. The area is located 80 kilometers southwest of Telegraph Creek and approximately 76 kilometers west of the Stewart-Cassiar paved highway (Highway 37). The mineral claims of interest are situated near the headwaters of Schaft Creek, a tributary of Mess Creek, which flows into the Stikine River downstream of the community of Telegraph Creek.

Schaft Creek is located in the coastal climate zone of British Columbia and is characterized by cool summers and cold humid winters. Elevations on the property range from 500 to 2,000 m above sea level. Average annual precipitation is estimated to be 640 mm or roughly 84% greater than that recorded at Telegraph Creek. Temperatures are strongly influenced by the Coast Mountains and may range from above  $+20^{\circ}$ C in the summer to below  $-20^{\circ}$ C in winter.

The Schaft Creek copper-gold-molybdenum-silver prospect was identified in 1957 by prospector Nick Bird while employed by the BIK Syndicate. Three diamond drill holes were drilled to moderate depths. Sample results from two of the holes returned sufficient copper values and resulted in further work. The prospecting syndicate was re-organized in 1966 into Liard Copper Mines Ltd. (" Liard") with Silver Standard Mines Limited, holding a 66% interest, acting as the manager. In 1966 ASARCO obtained an option to explore the Liard Copper Mines Ltd. ground and carried out geological and induced polarization surveys. The program included drilling 10,939 feet (3,335 metres) over 24 holes. The option was not maintained despite encouraging drill results and in 1968 Hecla Mining Company of Canada Ltd., a subsidiary of Hecla Mining Company of Wallace, Idaho, entered an option agreement to earn a 75% property interest and commenced drilling and other exploration work with Hecla operating company as its agent.

From 1968 through 1977, Hecla completed a total of 34,500 metres of diamond drilling, 6,500 metres of percussion drilling, induced polarization and resistivity surveys, geological mapping, air photography, and engineering studies related to the development of a large open pit copper-gold-molybdenum mine. In 1978 Wright Engineers Ltd. was contracted by Hecla to update a preliminary feasibility assessment initially completed in 1970. Exploration work at the property ceased in 1977 and in 1978 Hecla sold its interest to Teck Corporation ("Teck") (now Teck Cominco Limited).

In 1980 Teck commenced a program of exploration and drilling designed to confirm and expand Hecla's work. A total of 26,000 metres of diamond drilling was completed by 1981. Teck then undertook an engineering study to determine the feasibility of mine development. Further data

reviews were completed by Western Copper Holdings in 1988 and Teck in 1993. A total of 230 core holes with a total length of 60,200 metres and percussion holes with total length 6,500 metres have been completed at the Schaft Creek property. Copper Fox Metals has completed 15 large diameter (PQWL) drill holes across the Main Liard and West Breccia zones for a total of 3,161 meters. A total of 50,000 pounds of core is presently undergoing geological assessment and reporting before metallurgical testing of this new core is initiated.

The feasibility work completed on the Schaft Creek site has been focussed on the development of an open pit within the Liard Zone. The present plan would see mining of up to 70,000 tonnes per day of ore using conventional drill and blast mining methods with a maximum estimated strip ratio of 1.13.

## 2.2 Geology

The Schaft Creek copper-gold-molybdenum property is located in the northern part of the Intermontane Belt of the Canadian Cordillera. It is part of the northwesterly trending suite of porphyry-style mineral deposits that extends in Canada from the Copper Mountain/Ingerbelle deposit near the southern International Boundary to Casino in west-central Yukon. Globally, such deposits typically exhibit a few characteristics in common and many variations.

The Schaft Creek copper-gold-molybdenum deposit is hosted principally by Upper Triassic age volcaniclastic rocks. They have been variously altered and disrupted by emplacement of feldspar porphyry dykes and, possibly, sills and by several northwest-trending faults. Augite porphyry basalt is present in proximity to the west of the deposit area and also in the Liard mineral zone but its relationship to mineralization has not been determined. The mineralized area is, arguably, in fault contact, or disconformably or unconformably overlain by unmineralized, comparatively unaltered and undisturbed purple weathering andesitic volcanic rocks. Geological mapping at surface, aided by diamond drill core information, has failed to reveal any strong overall pattern of stratigraphic or petrologic controls to mineralization.

The Schaft Creek copper-gold-molybdenum deposit is widely acknowledged as being a porphyry copper deposit. The deposit consists of three distinct but connected zones: (a) the Liard (Main) zone hosted mainly by andesite flows and epiclastic rocks; (b) the West Breccia zone, a faultbounded tourmaline-sulphide matrix breccia; and (c) the Paramount zone, an intrusive breccia in altered andesite, granodiorite and quartz monzonite.

The broad, northerly plunging Liard, or Main, zone extends 1,000 metres in a northerly direction, 700 metres east-west, and has average thickness of 300 metres. It is a weakly altered stockwork system in volcanics (andesite flows and fragmentals) with minor felsic intrusive dykes carrying disseminated sulphide mineralization. A pyrite halo surrounds chalcopyrite, bornite and molybdenite mineralization in altered and faulted andesite. The zone has a low grade phyllic core and to the northwest is progressively down dropped on faults.

The West Breccia zone exhibits tourmaline, silicification and sericitization and is controlled by north-trending faults. Mineralization is contained within tourmaline and sulphide rich hydrothermal breccia. The Zone has a length of 500 metres, averages 100 metres in width and has been drilled to depths greater than 300 metres. Pyrite is the principal sulphide mineral, with lesser quantities of chalcopyrite and molybdenite. Copper and molybdenum contents are erratic but often high.

The Paramount zone of intrusive breccia occurs in granodiorite and quartz monzonite and has dimensions of 700 metres length, 200 metres width and +500 metres thickness. Exploration to the north has been constrained by practical considerations: rapidly increasing thicknesses of overlying apparently barren purple volcanic rocks challenge drilling methods and mitigate against practical conceptual open pit designs. The mineralization is contained in an intrusive breccia in altered andesite, granodiorite and quartz monzonite. Pyrite, bornite and chalcopyrite are present in equal proportions and molybdenite values exceed those found in the other two zones.

 $\label{eq:additional} Additional information comes from the provincial Minfile website (http://minfile.gov.bc.ca/Summary.aspx?minfilno=104G++015):$ 

"Mineralization occurs partly within a basin-like structure of fragmental and undivided green andesites, 900 metres in diameter. The basin is intruded by augite porphyry basalt and by vertical north striking quartz diorite dykes. A breccia cuts the western edge of the basin and trends north for at least 2700 metres. Post-mineralization mafic dykes are common. Later flat-lying fragmental purple andesites unconformably overlie the northeastern part of the deposit.

"In general, pyrite, chalcopyrite, bornite and molybdenite occur predominantly in fractured andesites. Less than 10 per cent of the mineralization occurs in felsic intrusives. Pyrite and bornite are mutually exclusive and most of the main deposit occurs within the bornite zone, with pyrite on the periphery. A barren zone, which contains no sulphides, conformably underlies the main deposit.

"Feldspathization and hydrothermal alteration are associated with mineralization. A quartz vein stockwork with biotite and some potassium feldspar coincides with the low-grade core of the main deposit. The biotite has a potassium/argon age of 182 Ma +/- 5 Ma. Epidote appears abruptly near the boundaries of the main deposit. Most mineralization occurs in an intermediate zone marked by chlorite- sericite alteration and the absence of epidote. Tourmaline and gypsum are locally abundant.

"The distribution of most sulphide minerals is fracture-controlled. They occur in dry fractures or combined with quartz or quartz-calcite veinlets within the andesitic volcanics. The sulphides within the felsic intrusives are usually disseminated and seem to have replaced the mafic minerals. Trace amounts of covellite, chalcocite, tetrahedrite and native copper have been identified. Minor amounts of galena and sphalerite occur in the breccia zone and in small calcite veins. Gold and silver are associated with the sulphides and average 0.34

grams per tonne and 1.71 grams per tonne, respectively."

#### 2.3 Past ML-ARD-Related Work

During an examination of existing core, Associated Mining Consultants Ltd. (2004) observed, "It has been noted that the core from previous drilling programs, which is stored on site, exhibits a remarkable degree of preservation with limited visible weathering."

Also, after a visual assessment of the integrity of the core samples, Associated Mining Consultants Ltd. (2004) selected 16 samples for assay validation based on prior documentation of assays, lithology, and spatial distributions. These 16 samples selected were subjected to standard Acid-Base accounting procedures to assess any acid generation and environmental impact concerns (Table 2-1). Because only statistical summaries but no individual analyses were presented, these analyses were not added to the Phase 1 database in this study (Appendix B).

| Table 2-1. Statistical Results of Previous Acid-Base Accounting for Sixteen Samples   (from Associated Mining Consultants Ltd., 2004) |                |              |  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--|
| Parameter                                                                                                                             | <u>Average</u> | <u>Range</u> |  |
| Sulphide (%S)                                                                                                                         | 0.43           | 0.1-0.9      |  |
| Paste pH                                                                                                                              | 8.8            | 7.5-9.3      |  |
| Acid Potential (kg CaCO <sub>3</sub> eq/tonne)                                                                                        | 13.4           | 3.4-28.6     |  |
| Neutralization Potential (kg CaCO <sub>3</sub> eq/tonne)                                                                              | 75.5           | 53-114       |  |
| Net Potential Ratio (NPR or NP/AP)                                                                                                    | 7.36           | 3.0-16.9     |  |
| Net Neutralization Potential (NP-AP, kg CaCO <sub>3</sub> eq/tonne)                                                                   | +62.2          | +45 to +91   |  |

Then, five samples were selected from the suite of 16 for metallurgical validation using standard batch grinding and rougher flotation procedures for sulphides. The five samples selected for metallurgical validation were taken from drill holes H61, T182, T186, T172, and T176.

Based on all this work, Associated Mining Consultants Ltd. (2004) concluded,

"The mineralogy is unlikely to pose acid generation concerns based on the analysis of the 16 selected core samples. Acid-Base accounting results indicated an excess neutralization potential of over twice the estimated acid potential in all cases and the paste pH ranged from neutral to alkaline. With the low head sulphide content in the samples to start and high flotation recoveries, the total sulphur in the tailings was reduced to below 0.03% to further reduce concerns on environmental impact."

5

As an addendum to Fischer and Hanych (2006), mineralogy was visually determined, using thin-section petrography, on 18 samples. This work focussed on feldspar quartz porphyry (rock code PPFQ, Table 3-1), with a few samples from tourmaline breccia, pneumatolytic breccia and volcanics. It was not meant to be representative of the Schaft Creek lithologic suite. Major observations from this work follow.

- "- Not all samples logged as PPFQ are intrusives. Some are porphyritic volcanics of felsic and intermediate composition (dacitic - andesitic); one sample is a fine grained, feldspathic intrusive rock classified as either syenite or anorthosite, depending on the composition of feldspar.
- All rocks classified as FQP [PPFQ] are porphyritic, felsic, massive igneous rocks.
- All have plagioclase as the predominant phenocryst mineral. Quartz phenocrysts ('quartz eyes') are relatively rare, very subordinate to plagioclase phenocrysts.
- A few samples have no quartz phenocrysts (quartz eyes) and therefore are feldspar porphyry.
- Ferromagnesian ('Femag') phenocrysts are consistently completely replaced by secondary minerals, generally chlorite and accessory leucoxene, opaques, in places by sericite and skeletal fine grained opaques and highly refracting brown minerals.
- The groundmass makes up a variable portion of the rock, generally 1/2.
- The groundmass consists of >90% feldspar, and accessory amounts of quartz, chlorite, sericite, carbonate, opaques.
- The groundmass in all cases is fine grained to very fine grained, generally 100 to 200 microns (0.1 0.2 mm) grain size, in some samples extremely fine grained (20 50 microns). Differences in grain size of the groundmass feldspar is noticeable and attributed to varying cooling rates.
- The shape of groundmass feldspar and other minerals is generally anhedral, interlocking. Lathy and feathery feldspar are rare but were observed.
- Only accessory amounts of fresh potassic feldspar (microcline) and albite were observed in some feldspar-quartz-porphyries and are interpreted as very limited, secondary, potassic alteration.
- The common pink to orange colour of the samples is attributed to ubiquitous micron-size sericite grains within plagioclase phenocrysts and to a lesser degree in groundmass feldspar. It is pointed out that 'sericite' is a synonym for fine grained muscovite which is a potassic phyllosilicate. It appears justified to describe this partial alteration as 'potassic'.
- Fast cooling of the liquid that formed the groundmass is interpreted for all Liard Zone FQP samples. This is in contrast to the grains size of the interstitial minerals in the Hickman /Yeheniko samples which are medium grained (0.3 1 mm)
- This fast cooling of the inter-phenocryst liquid can be interpreted either as due to relatively small intrusive bodies or surface-near (subvolcanic) bodies.
- Alteration is weak to moderate. Mostly sericite, minor carbonate, chlorite, rare potassic, i.e., microcline.
- Sulphides in feldspar-quartz-porphyry and volcanics occur both in veins; and as disseminations, associated with hairline fractures and grain boundaries, and with minor quartz, carbonate, chlorite and sericite.

Other observations from the individual thin sections include:

- Undifferentiated plagioclase was typically the major mineral, with fine-grained sericite and quartz often significant.
- Sulphide minerals were mostly disseminated and as veinlets and clusters, and mostly pyrite and chalcopyrite with less common molybdenite and bornite
- Pyrite was typically 0.05-1.0 mm in size as subhedral to anhedral grains, but variable among samples.
- Carbonate minerals, mostly reported as veins, patches, and groundmass, were not individually identified and were sometimes seen as feldspar replacement/alteration.

## 2.4 Important ML-ARD Observations from Previous Studies

Based on the preceding subsections, important observations pertaining to ML-ARD were:

- The Schaft Creek copper-gold-molybdenum deposit is widely acknowledged as being a porphyry copper deposit. It contains three mineral zones: the Liard, West Breccia, and Paramount Zones.
- During an examination of existing core, "It has been noted that the core from previous drilling programs, which is stored on site, exhibits a remarkable degree of preservation with limited visible weathering." Thus, the oxidation rate of Schaft Creek rock may be relatively slow.
- Based on 16 acid-base accounts from a previous, metallurgical study, all 16 samples were net acid neutralizing, with sulphide between 0.1 and 0.9%S, and Neutralization Potentials from 53 to 114 kg/t. Flotation recovery of sulphide reduced the sulphide levels in the synthetic tailings.
- Detailed mineralogy was examined in 18 thin sections, representing feldspar quartz porphyry (rock code PPFQ), tourmaline breccia, pneumatolytic breccia, and volcanics. Even one rock unit (PPFQ) was not entirely intrusive. Some PPFQ samples were porphyritic volcanics of felsic and intermediate composition (dacitic andesitic), and one sample was a fine grained, feldspathic intrusive rock classified as either syenite or anorthosite, depending on the composition of feldspar. Groundmass in these samples was generally around one-half of the total, with the groundmass consisting of more than 90% feldspar, and accessory amounts of quartz, chlorite, sericite, carbonate, opaques. Sulphide minerals were mostly disseminated and as veinlets and clusters, and mostly pyrite and chalcopyrite with less common molybdenite and bornite. Carbonate minerals, mostly reported as veins, patches, and groundmass, were not individually identified, and were sometimes seen as feldspar replacement/alteration.

## **3. SAMPLING AND ANALYSIS**

## 3.1 Sample Selection and Collection

Based on the 2005 diamond-drillhole Report (Fischer and Hanych, 2006), the important rock units and their total footages in the core are listed in Table 3-1. Results from the 2006 drilling program were not available for this Phase 1 study, and were thus not included here.

| Table 3-1. Important Rock Units and Their Observed Abundances in 2005 Drill Core<br>(based on Fischer and Hanych, 2006) |                                    |                                       |  |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------|--|
| Rock-Unit Code                                                                                                          | Description                        | Percentage of<br>Footage in 2005 Core |  |
| PPAU                                                                                                                    | Plagioclase-Augite-phyric Andesite | 32.1%                                 |  |
| ANPL (and ANLP)                                                                                                         | Andesitic Lapilli Tuff             | 19.6%                                 |  |
| ANPF Plagioclase-phyric or Feldspar-phyric Andesite 14.49                                                               |                                    |                                       |  |
| PPFQQuartz-Feldspar or Feldspar-Quartz Porphyry6.6%                                                                     |                                    |                                       |  |
| ANDS                                                                                                                    | Andesite                           | 4.5%                                  |  |
| BRVL                                                                                                                    | Volcanic Breccia                   | 4.4%                                  |  |
| TOBR                                                                                                                    | Tourmaline Breccia                 | 4.2%                                  |  |
| FAUL and SHER                                                                                                           | Faults, and Shear Zone / Faults    | 3.7%                                  |  |
| PPPL Plagioclase or Feldspar Porphyry                                                                                   |                                    | 3.0%                                  |  |
| ANTF Andesitic Tuff                                                                                                     |                                    | 2.1%                                  |  |
| BRIV Intrusive Breccia or Felsic Igneous Breccia                                                                        |                                    | 1.8%                                  |  |
| D/BS Diabase/Basic dyke                                                                                                 |                                    | 1.5%                                  |  |
| DIOR Diorite                                                                                                            |                                    | 1.1%                                  |  |
| BRXX Diorite Breccia                                                                                                    |                                    | 0.6%                                  |  |
| PNBX Pneumatolytic Breccia                                                                                              |                                    | 0.5%                                  |  |
| VN                                                                                                                      | Vein                               | NR                                    |  |
| ANNX Altered Andesite                                                                                                   |                                    | NR                                    |  |

Phase 1 ML-ARD sampling of the 2005 core was based on two objectives. First, approximately 60 samples would be collected to generally match the percentage abundance in the 2005 core (Table 3-2 and Appendices A and B), although ANPL was under-represented. Second, these samples would be collected from several 2005 holes, from various depths, generally within the proposed mining area (eleven holes, from 05CF234 to 05CF248) to provide three-dimensional spatial coverage.

| Table 3-2. Rock Units and Number of Phase 1 ML-ARD Samples from 2005 Drill Core                            |                                                           |                                                                   |  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|--|
| Rock-Unit Code                                                                                             | Description                                               | Number of ML-ARD<br>Samples (Percentage<br>of Total) <sup>1</sup> |  |
| PPAU                                                                                                       | Plagioclase-Augite-phyric Andesite                        | 16 (27.1%)                                                        |  |
| ANPL (and ANLP)                                                                                            | Andesitic Lapilli Tuff 5 (8.5%                            |                                                                   |  |
| ANPF                                                                                                       | Plagioclase-phyric or Feldspar-phyric Andesite 11 (18.6%) |                                                                   |  |
| PPFQ                                                                                                       | Quartz-Feldspar or Feldspar-Quartz Porphyry5 (8.5%)       |                                                                   |  |
| ANDS                                                                                                       | NDS Andesite 4 (6.8%)                                     |                                                                   |  |
| BRVL                                                                                                       | 'LVolcanic Breccia2 (3.4%)                                |                                                                   |  |
| TOBR                                                                                                       | Tourmaline Breccia                                        | 4 (6.8%)                                                          |  |
| FAUL and SHER                                                                                              | Faults, and Shear Zone / Faults                           | 3 (5.1%)                                                          |  |
| PPPL                                                                                                       | Plagioclase or Feldspar Porphyry                          | 2 (3.4%)                                                          |  |
| ANTF                                                                                                       | ANTF Andesitic Tuff                                       |                                                                   |  |
| BRIV Intrusive Breccia or Felsic Igneous Breccia                                                           |                                                           | 1 (1.7%)                                                          |  |
| D/BS Diabase/Basic dyke 1 (1.7)                                                                            |                                                           | 1 (1.7%)                                                          |  |
| DIOR                                                                                                       | DIOR Diorite 2 (2                                         |                                                                   |  |
| BRXX                                                                                                       | BRXX Diorite Breccia                                      |                                                                   |  |
| PNBX Pneumatolytic Breccia                                                                                 |                                                           | 0 (0%)                                                            |  |
| VN                                                                                                         | VN Vein                                                   |                                                                   |  |
| ANNX                                                                                                       | Altered Andesite                                          | 1 (1.7%)                                                          |  |
|                                                                                                            | TOTAL                                                     | 59                                                                |  |
| <sup>1</sup> Total includes two duplicates: 14578B from Hole 246 of PPAU, and 14685B from Hole 245 of DIOR |                                                           |                                                                   |  |

The Paramount Zone was not sampled as part of this Phase 1 study.

Each sample was approximately a few hundred grams in weight. It was collected from the uppermost material (already ground to gravel and finer grain sizes) in a sealed plastic bucket that had been in unheated storage in Smithers. Each sample was collected with a fiberglass hand shovel, cleaned with soap and water between samples, and placed into a labelled ziploc bag. All samples were relatively dry, except three saturated and one moist (Appendix A).

Two duplicate samples were collected, with a "B" suffix in Appendices A and B. These duplicate samples were taken from the bottoms of the buckets, instead of the top. Therefore, differences between these duplicates can reflect analytical inaccuracy as well as any variability within theoretically homogenized buckets.

# 3.2 Sample Analysis

Based on the provincial ML-ARD Prediction Manual (Chapter 1), the Phase 1 samples (Section 3.1) were subjected to several geochemical "static" (one-time) analyses. The 59 samples were sent to ALS Chemex Labs in North Vancouver for:

- 1) Chemex Package ABA-PKG05A plus C-IR07, which is standard-Sobek (U.S. EPA 600) expanded acid-base accounting (ABA), providing measured and/or calculated values of:
  - paste pH in a mixture of pulverized rock and water,
  - total sulphur,
  - measured sulphide,
  - leachable sulphate (both HCl and carbonate leach techniques),
  - calculated sulphide by subtracting sulphate from total sulphur,
  - barium-bound sulphate calculated from barium analyses,
  - calculation of acid potentials based on sulphide levels plus any unaccounted-for sulphur (Sulphide Acid Potential, SAP),
  - standard-Sobek neutralization potential (NP) by acid bath and base titration,
  - inorganic carbonate for mathematical conversion to Carbonate NP (Inorg CaNP),
  - total carbon for mathematical conversion to Carbonate-equivalent NP (Total CaNP),
  - excess carbon calculated from the difference between total carbon and inorganic carbon,
  - CaNP calculated from calcium (Ca CaNP),
  - CaNP calculated from Ca + Mg (Ca+Mg CaNP),
  - various Net Neutralization Potential (NNP) balances of acid neutralizing capacities minus various acid generating capacities, and
  - various Net Potential Ratio (NPR) balances of acid neutralizing capacities divided by various acid generating capacities.
- 2) total-element contents by:
  - Chemex Package ME-MS41m: 48-element analysis after strong four-acid digestion, and
  - Chemex Package ME-XRF-06: XRF (x-ray-fluorescence) whole rock for 14 elements and parameters.

Mercury was determined separately by digesting a prepared sample with aqua regia for at least one hour in a graphite heating block. After cooling, the resulting solution was diluted with demineralized water and was treated with stannous chloride to reduce the mercury. The resulting mercury was volatilized by argon purging and measured by atomic absorption spectrometry.

ABA and total-element results are compiled in Appendix B and are discussed in Chapter 4.

### 4. RESULTS OF GEOCHEMICAL STATIC TESTS

As explained in Chapter 3, 57 samples plus two duplicates from Schaft Creek core, drilled in 2005, were subjected to various geochemical static (one-time) analyses. This chapter discusses the results of those analyses, and the analyses are compiled in Appendix B.

#### 4.1 Acid-Base Accounting

As explained in Section 3.2, acid-base accounting (ABA) comprises several individual analyses and calculations. The major categories are paste pH (Section 4.1.1), sulphur species and acid potentials (Section 4.1.2), neutralization potentials (Section 4.1.3), and net balances of acid potentials and neutralization potentials (Section 4.1.4).

## 4.1.1 Paste pH

Paste pH is measured in a mixture ("paste") of pulverized sample and deionized water. If samples were well weathered and oxidized before analysis, then sometimes acidic pH values are measured, meaning the samples were already generating net acidity. QA/QC data showed the initial deionized water had a pH of 6.0-6.1, and values were reproducible to within  $\pm 0.2$  pH units.

Paste pH in the 59 core samples for Schaft Creek ranged from 7.6 to 8.6 (Appendix B and Figure 4-1). Thus, no samples were acidic at the time of analysis.

## 4.1.2 Sulphur Species and Acid Potentials

Possible sulphur species that could be found in Schaft Creek rock are: sulphide including pyrite and chalcopyrite (Section 2.3), leachable sulphate like gypsum or anhydrite, and non-leachable sulphate like barite. The sum of these species theoretically equals total sulphur, although analytical inaccuracy and the existence of other sulphur species rarely yield an exact balance.

Total sulphur in the 59 rock samples ranged from 0.02 to 1.91%S, with a mean of 0.45%S and a median of 0.26%S (Figure 4-1 and Appendix B). In most samples, total sulphur and sulphide were similar (Figure 4-2), with sulphide representing 87% of total sulphur on average. Thus, the two parameters were typically interchangeable. Internal blanks, internal duplicates, and the two external duplicates showed acceptable QA/QC for total sulphur and sulphide, with RPD values less than 10%.

However, four samples contained more HCl-leachable sulphate than sulphide (Figure 4-3), with two from the major rock unit PPAU (Table 3-1). Carbonate-leachable sulphate, which is an alternative method, showed that only three samples contained more leachable sulphate than sulphide (Appendix B). In any case, a few percent of samples contained significant sulphate, so for better accuracy sulphide is used here instead of total sulphur to calculate acid potential.



Figure 4-1. Paste pH vs. Total Sulphur in the 59 Schaft Creek Rock Samples.



Figure 4-2. Sulphide vs. Total Sulphur in the 59 Schaft Creek Rock Samples.



Figure 4-3. HCl-Leachable Sulphate vs. Total Sulphur in the 59 Schaft Creek Rock Samples.



Figure 4-4. Sulphur Mass Imbalance vs. Total Sulphur in the 59 Schaft Creek Rock Samples.

Non-leachable sulphide as barite (BaSO<sub>4</sub>) was calculated by assuming all barium from the ICP-MS analysis occurred as barite. This worst-case assumption showed that maximum non-leachable barium-bound sulphate would be 0.031%S with a mean of 0.01%S (Appendix B). On average, non-leachable sulphide as barite was 5.4% of total sulphur and thus not a major part of the sulphur mass balance.

A QA/QC mass-balance equation for sulphur species is:

%S(del<sub>actual</sub>) = %S(Total) - %S(Sulphide) - %S(HCl-leachable sulphate) - %S(BaSO<sub>4</sub>) Large negative values of %S(del<sub>actual</sub>) indicate the sum of sulphur species exceeds the measured total sulphur, sometimes due to analytical inaccuracy and detection limits. Large positive values indicate either (1) total sulphur was overestimated and/or (2) one or more sulphur species were underestimated. Positive values ("missing sulphur") can be added to acid-generating sulphide for safer calculations. This approach was used here for Schaft Creek rock, to calculate Sulphide-Based Acid Potentials (SAP, Section 4.1.4 and Appendix B).

Based on an allowable inaccuracy of 20% of total sulphur, 55 of 59 samples had acceptable balances (Figure 4-4). The four samples with significant imbalances had relatively low sulphur, including the sample with the lowest total sulphur. Low sulphur levels have higher probabilities of greater inaccuracies because they are closer to detection limits. In total, 32 of 59 samples had positive values of %S(del<sub>actual</sub>), so this "missing sulphur" was added to sulphide as a safety factor before calculating Sulphide-Based Acid Potential (SAP, Section 4.1.4 and Appendix B).

Because sulphide minerals in Schaft Creek rock are predominantly pyrite and chalcopyrite, and chalcopyrite does not necessarily generate as much acidity as pyrite upon oxidation, it is worthwhile to separate sulphide into individual sulphide minerals. To do this with ABA and total-element data (Section 3.2), the following steps were used.

- 1) Any "missing" sulphur due to mass imbalance (see %S(del) above) was added to measured/ calculated sulphide;
- 2) All measured zinc was assumed to occur as sphalerite; all measured molybdenum as molybdenite; all measured mercury as cinnabar; all measured arsenic as arsenopyrite or realgar; and all measured copper as chalcopyrite or proportionally as CuS<sub>2</sub>; and
- 3) All the sulphide minerals from Step 2, converted to %S, were subtracted from Step 1, to obtain calculated pyrite in %S.

It is important to note that this approach can underestimate pyrite. It can even result in physically impossible negative pyrite concentrations due to analytical inaccuracy, detection limits, and the assumptions of the selected metals occurring only as the stated sulphides.

While several samples have more pyrite (as %S) than copper-bound sulphide as chalcopyrite and proportionally as CuS<sub>2</sub> (as %S), most contain more copper-bound sulphide (Figure 4-5). In fact, most have negative amounts of pyrite. Thus, this approach is not highly reliable. Nevertheless, two different sulphide values will be used in this study to calculate acid potential.

- 1) The aforementioned Sulphide-Based Acid Potential (SAP) which includes positive values of %S(del<sub>actual</sub>) and represents the maximum ("worst case") amount of acid potential.
- 2) The "Pyrite-Calculated Acid Potential" (PAP) which is based only on calculated pyrite-bound

sulphide, with any value less than one-half the typical detection limit, including negative values, set at one-half the limit (0.005%S); this represents the minimum ("best case") acid potential.

As a result, SAP represented the maximum ("worst case") acid potential, whereas PAP was the minimum ("best case") acid potential. Actual acid potential would be somewhere at or between these two endpoints, but additional testwork would be needed to determine this (Chapter 5).

A scatterplot of SAP and PAP showed that many samples had the low, default PAP value based on 0.005% S (Figure 4-6). A few samples had nearly equivalent values, meaning most of their sulphide was pyrite.

In summary, total sulphur in the 59 Schaft Creek rock samples ranged from 0.02 to 1.91%S, with a mean of 0.45%S and a median of 0.26%S. In most samples, total sulphur and sulphide were similar (Figure 4-2), and thus the two parameters were typically interchangeable. Because a few samples did contain elevated leachable sulphate, sulphide is a better indicator of acid potential than total sulphur for Schaft Creek rock. However, in many samples, most sulphide was copper-bound sulphide (chalcopyrite) which may have less capacity to generate acidity. Therefore, each sample has a maximum Sulphide-Based Acid Potential (SAP) and a minimum Pyrite-Calculated Acid Potential (PAP).

## 4.1.3 Neutralization Potentials

There are various types of neutralizing capacities in rock samples, all expressed in units of kg  $CaCO_3$  equivalent/tonne (kg/t). These include:

- (1) Sobek "bulk neutralization potential" (NP) based on an hours-long acid bath to determine how much acid was neutralized in the short term (EPA 600 technique),
- (2) carbonate-equivalent neutralization potential (CaNP) calculated from measured solid-phase levels of inorganic carbonate (Inorg CaNP) or total carbon (Total CaNP), and
- (3) calculated CaNP assuming all calcium occurs as calcite (Ca CaNP) or all calcium + magnesium occurs as calcite and dolomite (Ca+Mg CaNP).

Each can reveal important aspects of a sample's capacity to neutralize the acidity generated by sulphide oxidation. All values are compiled in Appendix B.

Short-term bulk Sobek NP ranged from 40 to 219 kg/t in the 59 Schaft Creek samples, with a mean of 97 and a median of 92 kg/t (Figure 4-7 and Appendix B). These are relatively high values. They explain why no acidic paste pH values were detected (Section 4.1.1), and suggest there could be a long lag time (years to decades) before these samples might become acidic. The two external duplicates and one internal duplicate showed good QA/QC for Sobek NP, with RPD values less than 10%.



Figure 4-5. Calculated Pyrite-Bound Sulphide vs. Copper-Bound Sulphide as Chalcopyrite and CuS<sub>2</sub> in the 59 Schaft Creek Rock Samples.



Figure 4-6. Pyrite-Calculated Acid Potential (PAP) vs. Sulphide-Based Acid Potential (SAP) in the 59 Schaft Creek Rock Samples.



Figure 4-7. Paste pH vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.



Figure 4-8. Inorganic-Carbon-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

Some amount of measured NP is typically "unavailable" for neutralization, often between 5-15 kg/t although smaller and larger values have been documented (Morin and Hutt, 1997 and 2001). This can sometimes be seen in scatterplots of NP with paste pH after sufficient time has passed for net acidity to develop. The trends then typically show paste pH generally, but not consistently, decreasing as NP decreases, until acidic pH values are detected.

However, the lack of any acidic paste pH in the 59 samples means that Unavailable NP cannot be estimated at this time. Thus, the common default value of 10 kg/t will be used and will be subtracted from all measured values to obtain Available NP (Appendix B and Figure 4-7).

The comparison of total carbon with inorganic carbon showed that both were about the same in nearly all samples (Appendix B). Only four samples had noticeably higher total carbon, but inorganic carbon was still more than half of the total carbon in three of these four samples. In the remaining sample (14816, Appendix B), inorganic carbon was only around 17% of total carbon. This was probably an analytical error, with total carbon too high or inorganic carbon too low. As explained in the next paragraph, inorganic carbon was probably too low in this sample.

A scatterplot of Sobek NP with Inorganic Carbon, converted to the same units (Inorganic CaNP as kg/t), showed that Sobek NP was typically greater than Inorganic CaNP (Figure 4-8). NP was often greater by a factor of 1.5 or more, except above NP values above 100 kg/t when the two values converged. Such exceedances of NP above Inorganic CaNP are not common. Nevertheless, this appears valid for Schaft Creek rock based on (a) the consistency of the Schaft Creek results (Figure 4-8) and (b) the mineralogy showing abundant non-carbonate, aluminosilicate minerals (Chapter 2) that can provide neutralization. Based on the trend in Figure 4-8, Inorganic CaNP in anomalous Sample 14816 is likely too low.

Because the type of carbonate (calcite, dolomite, siderite, etc.) was not determined in previous studies (Chapter 2), scatterplots with Inorganic CaNP can sometimes reveal the carbonate composition, if elements like calcium and magnesium mostly occur only with carbonate. For the comparison, calcium was converted to "Ca CaNP" with similar units as Inorganic CaNP. This showed that some samples contained excess carbonate, many contained excess calcium, and some contained both in calcite-equivalent amounts (Figure 4-9). The excess calcium was consistent with calcium-bearing aluminosilicate minerals in Schaft Creek rock (Chapter 2).

A comparison of "Ca+Mg CaNP" to Inorganic CaNP showed that nearly every sample contained more Ca+Mg than carbonate (Figure 4-10). This meant that dolomite could not account for all the Ca+Mg, which was consistent with both calcium-bearing and magnesium-bearing aluminosilicate minerals in Schaft Creek rock (Chapter 2).

Sobek NP showed a better correlation with Ca CaNP (Figure 4-11) than with Inorganic CaNP (Figure 4-9), although the correlation was still poor for both. This suggests calcium-bearing minerals, both carbonate and aluminosilicate, can account for the Sobek NP in several samples, but not all samples. Ca+Mg CaNP displayed an even poorer correlation with Sobek NP (Figure 4-12). Thus, rapid assay-based analyses like calcium and magnesium cannot substitute for the more intensive Sobek NP in Schaft Creek rock.



Figure 4-9. Calcium-Based Neutralization Potential vs. Inorganic-Carbon-Based Neutralization Potential in the 59 Schaft Creek Rock Samples.



Figure 4-10. Calcium-Magnesium-Based Neutralization Potential vs. Inorganic-Carbon-Based Neutralization Potential in the 59 Schaft Creek Rock Samples.



Figure 4-11. Calcium-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.



Figure 4-12. Calcium-Magnesium-Based Neutralization Potential vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

In summary, Sobek (EPA 600) Neutralization Potential (NP) ranged from 40 to 219 kg/t in the 59 Schaft Creek samples, with a mean of 97 and a median of 92 kg/t. These are relatively high values. They explain why no acidic paste pH values were detected, and suggest there could be a long lag time (years to decades) before these samples might become acidic. A certain amount of measured NP is typically "unavailable" for neutralization, and thus should be subtracted from measured values. The lack of acidic paste pH values precluded an initial estimate of Unavailable Neutralization Potential, so the common value of 10 kg/t is used here. NP was typically greater than inorganic carbonate in many samples, meaning NP also reflected the presence of non-carbonate aluminosilicate minerals. These minerals have been documented in Schaft Creek rock. Also, NP did not correlate well with solid-phase calcium or magnesium levels, but some samples showed that calcium-bearing minerals could account for their NP levels.

#### 4.1.4 Net Balances of Acid-Generating and Acid-Neutralizing Capacities

As explained in Section 4.1.2, the acid-generating capacities of the Schaft Creek samples of rock could be calculated from total sulphur to obtain Total-Sulphur-Based Acid Potentials (TAP), or sulphide plus %S(del) to obtain Sulphide-Based Acid Potentials (SAP). Because total sulphur was mostly composed of sulphide, TAP and SAP were generally interchangeable. SAP is used here for net balances, because a few samples had significant amounts of leachable sulphate which was not acid generating. As explained in Section 4.1.2, SAP is considered the maximum "worst-case" acid potential for each sample, whereas the Pyrite-Calculated Acid Potential (PAP) is considered the "best-case" minimum.

Neutralization Potentials (NP) were discussed in Section 4.1.3. The current estimate of 10 kg/t was considered unavailable and was subtracted from measured values.

Net balances of these two potentials were calculated to predict whether a sample would be net acid generating, perhaps after a long near-neutral "lag time", or net acid neutralizing indefinitely. Net balances can be calculated using division (Net Potential Ratio, NPR = NP / AP) or subtraction (Net Neutralization Potential, NNP = NP - AP).

Provincially, NPR is preferred and used here. "Adjusted" Sulphide-Based NPR values were obtained by first subtracting 10 kg/t of unavailable NP from measured NP:

|  | Adj SNPR = [NP | - 10] / [%S(sulphide + | positive delS values) | * 31.25] | (Eq. 4-1) |
|--|----------------|------------------------|-----------------------|----------|-----------|
|--|----------------|------------------------|-----------------------|----------|-----------|

| Similarly, Adjusted Pyrite-Calculated NPR values were calculated by: |           |
|----------------------------------------------------------------------|-----------|
| Adj PNPR = [NP - 10] / [PAP]                                         | (Eq. 4-2) |

Provincial non-site-specific ABA screening criteria are: NPR < 1 is net acid generating, perhaps after some lag time;  $1 \le NPR \le 2$  is uncertain until further testing; and NPR>2 is net acid neutralizing. The implications of using the alternative criterion of 1.0 are discussed below and in Chapter 5.

It is important to note that all discussions of net balances in this report are "unweighted". This means that they were not adjusted to tonnages in the Schaft Creek Deposit. Three-dimensional

geostatistical modelling of geology and ML-ARD parameters should be conducted (Chapter 5; see also Section 4.1.5), to address issues such as (1) the total tonnages of net-acid-generating rock, (2) year-by-year production of net-acid-generating rock, and (3) portions of rock units that are net acid generating.

Worst-case Adjusted SNPR values ranged from 0.86 (net acid generating) to 114 (net neutralizing). Only one sample was less than 1.0 (tournaline breccia, TOBR), and eight samples (several rock units) were between 1.0 and 2.0 (Figures 4-13 and 4-14, and Appendix B). Only samples with sulphide below 0.6%S or Sobek NP above 125 kg/t were consistently net neutralizing.

In contrast, best-case Adjusted PNPR values ranged from 1.03 (uncertain) to the default value of 200 which means that PAP was less than 0.01%S (Figures 4-15 and 4-16, and Appendix B). No values were less than 1.0, and only three samples from three rock units were less than 2.0. Many samples had the default value of 200. As with Adj SNPR, only samples with sulphide below 0.6%S or Sobek NP above 125 kg/t were consistently net neutralizing.

Overall, only 0-2% of the 59 samples were net acid generating and 5-14% were uncertain (Table 4-1). Therefore, most samples were net neutralizing. Although the numbers of samples from most rock units were limited, the major rock units (>5% of 2005 footage, Table 3-1) with some uncertain samples were PPAU and PPFQ. The minor units with uncertain or net-acid-generating percentages were ANDS, TOBR, BRIV, and DIOR.

In summary, best-case and worst-case net balances of acid-generating and acid-neutralizing capacities were calculated for each of the 59 Schaft Creek samples. Overall, only 0-2% of the samples were net acid generating and 5-14% were uncertain based on generic criterion. Thus, most samples were net neutralizing. PPAU and PPFQ were the major rock units with uncertain samples, while net-acid-generating or uncertain samples were found in the minor rock units of ANDS, TOBR, BRIV, and DIOR.

# 4.1.5 Spatial Distribution of Net Balances

As explained in Section 4.1.4, net balances of acid-generating and acid-neutralizing capacities in the 59 samples of Schaft Creek core showed that most samples were net acid neutralizing. Only 0-2% of samples were net acid generating and 5-14% were uncertain.

An important aspect of these balances is whether there are any major spatial distributions through the Schaft Creek Deposit. For example, if all net-acid-generating and uncertain samples were located in one area, this area could be targetted for special mining and waste management.

Spatial distributions are best determined by geostatistical modelling combined with the Schaft Creek geologic model (Chapter 5). However, as a general indication here, one general east-west and one general north-south vertical cross-section were plotted, with drillholes moved laterally onto the plane of the section.



Figure 4-13. Worst–Case Adjusted Sulphide-Based Net Potential Ratio vs. Sulphide in the 59 Schaft Creek Rock Samples.



Figure 4-14. Worst–Case Adjusted Sulphide-Based Net Potential Ratio vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.



Figure 4-15. Best–Case Adjusted Pyrite-Calculated Net Potential Ratio vs. Sulphide in the 59 Schaft Creek Rock Samples.



Figure 4-16. Best–Case Adjusted Pyrite-Calculated Net Potential Ratio vs. Sobek Neutralization Potential in the 59 Schaft Creek Rock Samples.

| Table 4-1. Summary of Net-Acid-Generating, Uncertain, and Net-Neutralizing   Percentages of Samples from 2005 Drill Core |                                 |                                                      |                  |                  |  |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|------------------|------------------|--|
|                                                                                                                          | Number of MI -                  | Best-case and worst-case percentages <sup>2</sup> of |                  |                  |  |
| Rock-Unit Code                                                                                                           | ARD <u>Samples</u> <sup>1</sup> | Net acid generating                                  | <u>Uncertain</u> | Net neutralizing |  |
| PPAU                                                                                                                     | 16                              | 0%                                                   | 0-12.5%          | 87.5-100%        |  |
| ANPL (and ANLP)                                                                                                          | 5                               | 0%                                                   | 0%               | 100%             |  |
| ANPF                                                                                                                     | 11                              | 0%                                                   | 0%               | 100%             |  |
| PPFQ                                                                                                                     | 5                               | 0%                                                   | 20-40%           | 60-80%           |  |
| ANDS                                                                                                                     | 4                               | 0%                                                   | 25-25%           | 75-75%           |  |
| BRVL                                                                                                                     | 2                               | 0%                                                   | 0%               | 100%             |  |
| TOBR                                                                                                                     | 4                               | 0-25%                                                | 0-25%            | 75-75%           |  |
| FAUL and SHER                                                                                                            | 3                               | 0%                                                   | 0%               | 100%             |  |
| PPPL                                                                                                                     | 2                               | 0%                                                   | 0%               | 100%             |  |
| ANTF                                                                                                                     | 2                               | 0%                                                   | 0%               | 100%             |  |
| BRIV                                                                                                                     | 1                               | 0%                                                   | 0-100%           | 0-100%           |  |
| D/BS                                                                                                                     | 1                               | 0%                                                   | 0%               | 100%             |  |
| DIOR                                                                                                                     | 2                               | 0%                                                   | 0-100%           | 0-100%           |  |
| BRXX                                                                                                                     | 0                               |                                                      |                  |                  |  |
| PNBX                                                                                                                     | 0                               |                                                      |                  |                  |  |
| VN                                                                                                                       | 0                               |                                                      |                  |                  |  |
| ANNX                                                                                                                     | 1                               | 0%                                                   | 0%               | 100%             |  |
|                                                                                                                          | 59                              | 0-1.7%                                               | 5.1-13.6%        | 84.7-94.9%       |  |
| <sup>1</sup> Total includes two duplicates: 14578B from Hole 246 of PPAU, and 14685B from Hole 245                       |                                 |                                                      |                  |                  |  |

of DIOR.

<sup>2</sup> Net-acid-generating samples had NPR values less than 1.0, uncertain samples had 1.0 < NPR < 2.0, and net-neutralizing samples > 2.0; best case is defined by the Adjusted Pyrite-Calculated Net Potential Ratio (Adj PNPR) and the worst case is defined by the

Adjusted Sulphide-Based Net Potential Ratio (Adj SNPR).
Based on the worst-case net balance (Adjusted SNPR, Section 4.1.4), the general east-west cross-section showed the center area was net-neutralizing (Figure 4-17), while net-acid-generating and uncertain samples were found on the periphery. The general north-south cross-section showed uncertain samples were found in three adjacent holes (Figure 4-18). Based on this limited information, the net-acid-generating and uncertain samples may be spatially restricted in the Schaft Creek Deposit, but additional samples and geostatistical modelling are needed to confirm this.

## 4.2 Total-Element Analyses

Total-element levels in the 59 Schaft Creek samples (Section 3.1) were measured by ICP-MS analysis after strong four-acid digestion and by x-ray-fluorescence whole-rock analysis (Section 3.2). The results are compiled in Appendix B. There was generally good agreement for elements detected by both methods (Appendix B), except chromium whose whole-rock levels were notably higher due to the higher detection limit.

Overall, the dominant elements in the Schaft Creek samples were silicon and aluminum (Appendix B), reflecting the dominance of aluminosilicate minerals (Chapter 2). Calcium, iron, potassium, magnesium, sodium, and Loss on Ignition (LOI) were relatively abundant. LOI typically reflects the loss from the samples of some or all sulphur, carbon, and tightly bound or crystalline water.

To identify the metals and other elements that occurred at relatively high levels in the rock, each element was compared with average crustal abundances, as recommended in provincial ML-ARD documents (Price, 1998). Any level at least three times greater than the average maximum crustal abundance was highlighted with a box in Appendix B.

This showed that the Schaft Creek samples were:

- frequently elevated in silver, bismuth, copper, molybdenum, and selenium; and,

- occasionally elevated in sulphur, antimony, and tungsten.

Elevated solid-phase levels of elements do not necessarily mean they will leach into water at high concentrations. In fact, they may be elevated because they did not leach. Additional testwork is needed to evaluate metal leaching in detail (Chapter 5).

Solid-phase correlations of elements can sometimes reveal mineralogical associations. For example, elements correlating with sulphide presumably occur within the sulphide minerals, which at the Schaft Creek Project are typically pyrite and chalcopyrite (Chapter 2). Correlations with Sobek Neutralization Potential (NP, Section 4.1.3) indicate those elements may be concentrated in certain carbonate and aluminosilicate minerals, which can dissolve even in the absence of sulphide oxidation.

The only element that showed some correlation with sulphide was copper. This was discussed in Section 4.1.2. NP showed some correlation with calcium, as discussed in Section 4.1.3, and perhaps minor negative correlations with arsenic and lead. The few samples of tourmaline breccia (TOBR), and a few samples of other units, sometimes stood out as distinct groupings of generally higher or lower levels of elements like gallium, phosphorus, thallium, tungsten, and uranium.



Figure 4-17. General East-West Vertical Cross-Section through the Schaft Creek Deposit, Showing Worst-Case Adjusted Sulphide-Based Net Potential Ratio (0-1 = net acid generating; 1-2 = uncertain; >2 = net acid neutralizing).



Figure 4-18. General North-South Vertical Cross-Section through the Schaft Creek Deposit, Showing Worst-Case Adjusted Sulphide-Based Net Potential Ratio (0-1 = net acid generating; 1-2 = uncertain; >2 = net acid neutralizing).

In summary, the 59 samples of Schaft Creek core were predominantly composed of silicon and aluminum, reflecting the abundant aluminosilicate minerals. Calcium, iron, potassium, magnesium, sodium, and Loss on Ignition (LOI) were also relatively abundant. Compared to general crustal abundances, the 59 samples were frequently elevated in silver, bismuth, copper, molybdenum, and selenium, and occasionally elevated in sulphur, antimony, and tungsten. However, solid-phase levels do not typically reflect leaching rates into water, so additional testwork is needed on metal leaching. Only copper showed some correlation with sulphide, reflecting the copper-bound sulphide discussed under Acid-Base Accounting. For Sobek Neutralization Potential, calcium showed some correlation, which was also discussed under Acid-Base Accounting. Samples of some rock units, particularly tourmaline breccia (TOBR), stood out as a distinct group for some elements like gallium, phosphorus, thallium, tungsten, and uranium.

# 5. CONCLUSION AND RECOMMENDATIONS

This report contains the first phase of ML-ARD studies for the Schaft Creek Project. Previous relevant information was compiled. Also, 59 samples of core rejects, from 11 holes drilled in 2005, were collected from cold storage. This set included two duplicates for QA/QC checks. All 59 samples were analyzed for expanded Sobek (EPA 600) acid-base accounting, and for total-element contents using ICP-MS after four-acid digestion and using x-ray fluorescence whole rock.

# Previous Information

The compilation of existing information relevant to ML-ARD led to the following important observations.

- The Schaft Creek copper-gold-molybdenum deposit is widely acknowledged as being a porphyry copper deposit. It contains three mineral zones: the Liard, West Breccia, and Paramount Zones.
- During an examination of existing core, "It has been noted that the core from previous drilling programs, which is stored on site, exhibits a remarkable degree of preservation with limited visible weathering." Thus, the oxidation rate of Schaft Creek rock may be relatively slow.
- Based on 16 acid-base accounts from a previous, metallurgical study, all 16 samples were net acid neutralizing, with sulphide between 0.1 and 0.9%S, and Neutralization Potentials from 53 to 114 kg/t. Flotation recovery of sulphide reduced the sulphide levels in the synthetic tailings.
- Detailed mineralogy was examined in 18 thin sections, representing feldspar quartz porphyry (rock code PPFQ), tourmaline breccia, pneumatolytic breccia, and volcanics. Even one rock unit (PPFQ) was not entirely intrusive. Some PPFQ samples were porphyritic volcanics of felsic and intermediate composition (dacitic andesitic), and one sample was a fine grained, feldspathic intrusive rock classified as either syenite or anorthosite, depending on the composition of feldspar. Groundmass in these samples was generally around one-half of the total, with the groundmass consisting of more than 90% feldspar, and accessory amounts of quartz, chlorite, sericite, carbonate, opaques. Sulphide minerals were mostly disseminated and as veinlets and clusters, and mostly pyrite and chalcopyrite with less common molybdenite and bornite. Carbonate minerals, mostly reported as veins, patches, and groundmass, were not individually identified and were sometimes seen as feldspar replacement/alteration.

# Results of Acid-Base Accounting (ABA)

Paste pH in the 59 core samples for Schaft Creek ranged from 7.6 to 8.6. Thus, no samples were acidic at the time of analysis.

Total sulphur in the 59 Schaft Creek rock samples ranged from 0.02 to 1.91%S, with a mean of 0.45%S and a median of 0.26%S. In most samples, total sulphur and sulphide were similar, and thus the two parameters were typically interchangeable. Because a few samples did contain elevated leachable sulphate, sulphide is a better indicator of acid potential than total sulphur for Schaft Creek rock. However, in many samples, most sulphide was copper-bound sulphide (chalcopyrite) which may have less capacity to generate acidity. Therefore, each sample has a maximum "worst-case" Sulphide-Based Acid Potential (SAP) and a minimum "best-case" Pyrite-Calculated Acid Potential (PAP).

Sobek (EPA 600) Neutralization Potential (NP) ranged from 40 to 219 kg/t in the 59 Schaft Creek samples, with a mean of 97 and a median of 92 kg/t. These relatively high values explain why no acidic paste pH values were detected, and suggest there could be a long lag time (years to decades) before these samples might become acidic. The lack of acidic paste pH values precluded an initial estimate of Unavailable Neutralization Potential, so the common value of 10 kg/t is used here.

NP was typically greater than inorganic carbonate in many samples, meaning NP also reflected the presence of non-carbonate aluminosilicate minerals. These minerals have been documented in Schaft Creek rock. Also, NP did not correlate well with solid-phase calcium or magnesium levels, but some samples showed that calcium-bearing minerals could account for their NP levels.

Best-case and worst-case net balances of acid-generating and acid-neutralizing capacities were calculated for each of the 59 Schaft Creek samples. Overall, only 0-2% of the samples were net acid generating and 5-14% were "uncertain" based on generic criterion. Thus, most samples were net neutralizing. PPAU and PPFQ were the major rock units with uncertain samples, while net-acid-generating or uncertain samples were found in the minor rock units of ANDS, TOBR, BRIV, and DIOR.

To generally assess the spatial distribution of net balances, a general east-west cross-section showed the center area was net-neutralizing, while net-acid-generating and uncertain samples were found on the periphery. The general north-south cross-section showed uncertain samples were found in three adjacent holes. Based on this limited information, the net-acid-generating and uncertain samples may be spatially restricted in the Schaft Creek Deposit, but additional samples and geostatistical modelling are needed to confirm this.

# Results of Total-Element Analyses

The 59 samples of Schaft Creek core were predominantly composed of silicon and aluminum, reflecting the abundant aluminosilicate minerals. Calcium, iron, potassium, magnesium, sodium, and Loss on Ignition (LOI) were also relatively abundant.

Compared to general crustal abundances, the 59 samples were frequently elevated in silver, bismuth, copper, molybdenum, and selenium, and occasionally elevated in sulphur, antimony, and tungsten. However, solid-phase levels do not typically reflect leaching rates into water, so

additional testwork is needed on metal leaching.

Only copper showed some correlation with sulphide, reflecting the copper-bound sulphide discussed under Acid-Base Accounting. For Sobek Neutralization Potential, calcium showed some correlation. Samples of some rock units, particularly tourmaline breccia (TOBR), stood out as a distinct group for some elements like gallium, phosphorus, thallium, tungsten, and uranium.

# Recommendations for Future ML-ARD Work

A phased approach, with each focussing on resolving uncertainties raised in previous ones, is recommended in the provincial ML-ARD Prediction Manual. Thus, based on the preceding information, we offer the following recommendations for the next phase of ML-ARD studies at the Schaft Creek Project.

- Overburden should be analyzed for ML-ARD potential. Up to several tens of meters of overburden have been reported in drillholes. This overburden in the pit area would be disturbed and oxidized during mining, and might be used for construction or reclamation during and after operation.
- Unavailable Neutralization Potential (UNP) could not be reliably estimated from available data (Section 4.1.3), but affects net balances. Therefore, UNP should be determined better for Schaft Creek. This would likely require humidity cells (see below).
- Most samples with NPR < 2 were between 1.0 and 2.0, meaning their ARD potential is "uncertain" at this time (Section 4.1.5). This uncertain range should be resolved for proper planning of waste management and water management. Humidity cells would help with this (see next recommendation).
- Six laboratory-based kinetic tests, known as humidity cells, should be conducted for at least 40 weeks on 1-kg samples of Schaft Creek rock. These would provide bulk rates of acid generation, neutralization, and metal leaching, and would help in resolving UNP and "uncertain" samples (see above). Previous information on weathered core suggested reaction rates in Schaft Creek rock were low.
- Four on-site leach tests, each containing up to approximately one tonne of disturbed rock or broken core, should be set up at Schaft Creek and periodically sampled as part of routine on-site water-quality monitoring. These would provide on-site drainage-chemistry data and are important for upscaling the smaller-scale humidity cells.
- At this time, the net-acid-generating and "uncertain" samples may be clustered in portions of the deposit, which would focus waste management and any special handling onto specific zones. To examine this clustering further, additional core samples, including 2006 holes, should be collected from across the deposit and submitted for expanded acid-base accounting and total-element contents. The results would be used in geostatistical modelling (see next recommendation).

- Three-dimensional geostatistical modelling should be carried out to calculate total tonnages and year-by-year tonnages of net-acid-generating, currently "uncertain", and net-neutralizing rock. This is important for identifying the most cost-effective options for waste management and water management.

## **6. REFERENCES**

- Associated Mining Consultants Ltd. 2004. Preliminary Assessment of the Schaft Creek Deposit, British Columbia Project Status Report No. 1. Prepared for 955528 (Alberta) Ltd., dated September 20.
- Copper Fox Metals Inc. 2006. Schaft Creek Copper-Gold-Molybdenum-Silver Deposit Project Description. Dated July 2006.
- Fischer, P., and W. Hanych. 2006. 2005 Diamond Drill Report Schaft Creek Property Northwestern British Columbia for Copper Fox Metals Inc. Dated March 27.
- Giroux, G.H., and E.A. Ostensoe. 2003. Summary Report Status and Resources Estimate Schaft Creek Property Northwestern British Columbia. Prepared for 955528 Alberta Ltd., dated June 30.
- Morin, K.A., and N.M. Hutt. 2001. Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies, Digital Edition. MDAG Publishing (www.mdag.com), Surrey, British Columbia. ISBN: 0-9682039-1-4.
- Morin, K.A., and N.M. Hutt. 1997. Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies. MDAG Publishing (www.mdag.com), Surrey, British Columbia. ISBN: 0-9682039-0-6.
- Price, W.A., K.A. Morin, N.M. Hutt. 1997. Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: Part II. Recommended procedures for static and kinetic testing. IN: Proceedings of the Fourth International Conference on Acid Rock Drainage, May 31-June 6, Vancouver, Canada, Volume I, p. 15-30.
- Price, W.A., and J.C. Errington. 1998. Guidelines for Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. Issued by the British Columbia Ministry of Energy and Mines.
- Price, W.A. 1998. Draft Manual for the Prediction of Metal Leaching and Acid Rock Drainage. Issued by the British Columbia Ministry of Energy and Mines.

APPENDIX A. Notes on the Collection of Phase 1 ML/ARD Samples by MDAG, February 2007

# Schaft Creek Project Trip Report for Static-Test Sampling

K. Morin, February 9, 2007

On February 3 (Saturday), staff at Bandstra Transportation Systems opened Copper Fox' unheated storage locker. They sorted up to 20 skids to find the 63 buckets containing the initial list of samples for static testing (acid-base accounting and total-element analyses). This saved several hours of Rescan/MDAG time. The selected buckets were consolidated onto two skids, and brought inside to warm up so that saturated samples could be sampled. Six of the 63 sample buckets could not be found and were thus deleted from the sampling list. This left 57 samples to be collected.

On February 7, Kevin Morin flew to Smithers on the early morning flight. At Bandstra, he collected the 57 samples, plus two additional backup samples (Table 1). This involved prying open each bucket, noting the general colour and the dryness of the rejects (gravel, sand, and silt), then removing a few hundred grams from the top of the rejects. To minimize cross-contamination of metals, each sample was removed with a fibreglass hand shovel, after cleaning with disposable soapy wipes and clean paper towels. The two backup samples were collected from the bottom, rather than the top, of the rejects, to check for any significant geochemical variability within each reject bucket.

The 59 samples were shipped in the late afternoon of February 7, by Greyhound Courier, to ALS Chemex Labs in North Vancouver.

Schaft Creek Project Project:

Client: Data: Copper Fox Metals Inc. Sample Information

Comments: Samples collected for ABA, trace metal, and whole rock analysis On Feb 7'07 by Kevin Morin, MDAG.

| Sample<br>No. | Hole Id | Lithology<br>From<br>(m) | To<br>(m) | Rock<br>Code | Mineralization Style             | Ch<br>Chlorite | Ep<br>Epidote | Bt<br>Biotite | Alteration<br>Se<br>Sericite | n <b>Minerals</b><br>K<br>K-spar | Si<br>Silicic | Hm<br>Hematite | Cb  | Tm<br>Tourmaline | %<br>Mt<br>Magnetite |
|---------------|---------|--------------------------|-----------|--------------|----------------------------------|----------------|---------------|---------------|------------------------------|----------------------------------|---------------|----------------|-----|------------------|----------------------|
| 14545         | 05CF246 | 12.1                     | 15.2      | ANPF         | Py,Cp dis                        | W-M            |               |               |                              |                                  |               | W              |     |                  |                      |
| 14565         | 05CF246 | 63.6                     | 66.7      | ANPF         | Cp cb-qtz-ch stkwk               | W              |               |               |                              | W                                |               | W              |     |                  |                      |
| 14571         | 05CF246 | 81.8                     | 84.8      | PPPL         | Py,Cp dis, Mb cb-qtz-ch vn       | W              |               |               |                              | W                                |               | Х              |     |                  |                      |
| 14578         | 05CF246 | 103.0                    | 106.1     | PPAU         | Py dis, Cp ch stckwk             | W-M            |               |               |                              | W-M                              |               | Х              |     |                  |                      |
| 14578B        | 05CF246 | 103.0                    | 106.1     | PPAU         |                                  |                |               |               |                              |                                  |               |                |     |                  |                      |
| 14598         | 05CF246 | 154.5                    | 157.6     | PPAU         | Cp,Py dis                        | M              |               |               |                              |                                  |               |                |     |                  | 5                    |
| 14689         | 05CF244 | 9.1                      | 12.1      | PPFQ         | Py,Cp, dis, cb-qtz vn, frct      | W              |               |               | W                            | S                                |               | Х              |     |                  |                      |
| 14695         | 05CF244 | 27.3                     | 30.3      | PPAU         | Py,Cp, dis                       | M-S            |               |               |                              | W                                |               | W              |     |                  | Т                    |
| 14742         | 05CF244 | 160.6                    | 163.6     | ANLP         | Cp dis, Cp,Bn qtz-cb vn, Mb frct | W              |               |               |                              | W                                |               |                | W   |                  | 1                    |
| 14998         | 05CF248 | 36.4                     | 39.4      | ANPF         | STKWK                            | W              |               |               |                              |                                  |               |                |     |                  |                      |
| 15862         | 05CF248 | 78.8                     | 81.8      | ANPF         | STKWK, MB-Frct                   | W              | W             |               |                              | W                                |               |                |     |                  |                      |
| 15870         | 05CF248 | 103.0                    | 106.1     | ANLP         | STRWK                            | VV             |               |               |                              | M                                |               | vv             |     |                  |                      |
| 15879         | 05CF248 | 130.3                    | 133.3     | BRVL         | STRWK                            | VV             | vv            |               |                              | VV                               |               | VV             | 14/ |                  |                      |
| 15887         | 05CF248 | 145.5                    | 148.5     | ANTE         | STKWK, Dis                       | VV             | VV            |               |                              | 14/                              | VV            | 14/            | VV  |                  |                      |
| 15891         | 05CF248 | 157.6                    | 160.6     | ANPF         | STRWK                            | VV             |               |               |                              | VV                               |               | VV             |     |                  |                      |
| 15908         | 05CF248 | 209.1                    | 212.1     | PPFQ         | STKWK, MB-FICT, DIS, FIT         | VV             |               |               |                              | 14/                              |               |                |     |                  |                      |
| 15911         | 05CF248 | 218.2                    | 221.2     | ANDS         | STRWR, DIS                       | vv             |               |               |                              | vv<br>S                          | 14/           |                |     |                  |                      |
| 14130         | 05CF236 | 10.2                     | 21.2      |              |                                  |                |               |               |                              | 5                                | VV            |                |     |                  |                      |
| 14144         | 05CF236 | 00.0                     | 03.0      |              | Cu diss & veins                  | IVI<br>S       |               |               |                              | 101-5                            | vv            |                |     |                  |                      |
| 14140         | 05CF230 | 97.0                     | 75.0      |              | Mb fracture                      | 3              |               |               |                              | 3<br>W                           |               | vv             |     |                  |                      |
| 14150         | 05CF230 | 106 1                    | 90.9      |              | IND ITACIDIE                     |                |               |               |                              | vv                               |               |                |     |                  | 14/                  |
| 14102         | 05CF230 | 100.1                    | 120.2     |              | Cu Mb atz voine & diss           |                |               |               |                              | MS                               |               |                |     |                  | vv                   |
| 14109         | 05CF234 | 127.3                    | 21.2      |              | Disseminated + Vein              | 10/            | 10/           |               | ۱۸/                          | W-5                              |               |                |     |                  |                      |
| 14021         | 05CF234 | 27.3                     | 21.2      | TOBR         | Hydro By Matrix (yein) + diss    | N/             | Ŵ             |               | N/                           | N/                               | М             |                |     | x                |                      |
| 14036         | 05CF234 | 63.6                     | 66.7      | TOBR         | Stockwork + disseminated         | M              | ••            |               | S                            | M                                | M             |                |     | X                |                      |
| 14043         | 05CF234 | 84.8                     | 87.9      | TOBR         | Stockwork + disseminated         | W/             | W/            |               | м                            | M                                | W/            |                |     | x                |                      |
| 14060         | 05CF234 | 136.4                    | 139.4     | BRIV         | Disseminated in matrix           | M              | M             |               | M                            | M?                               | ••            | M2             |     | ~                |                      |
| 14067         | 05CF234 | 157.6                    | 160.1     | ANPE         | Disseminated vein                | s              | Ŵ             |               | S                            | W                                | W             |                |     |                  |                      |
| 14076         | 05CF235 | 18.2                     | 21.2      | ANDS         | STKWK Dis                        | Ŵ              |               |               | U U                          |                                  |               |                |     |                  |                      |
| 14083         | 05CF235 | 39.4                     | 42.4      | ANDS         | STKWK                            | Ŵ              | W             |               |                              |                                  |               |                |     |                  |                      |
| 14099         | 05CF235 | 87.9                     | 90.9      | PPFQ         | Dis                              | Ŵ              |               |               |                              |                                  |               |                |     |                  |                      |
| 14103         | 05CF235 | 100.0                    | 103.0     | TOBR         | Dis                              | w              | W             |               |                              | W                                |               |                |     | м                |                      |
| 14232         | 05CF239 | 27.3                     | 30.3      | PPAU         | dis, stkwk, bx vns, Mb frct      |                |               |               |                              | W                                |               |                |     |                  |                      |
| 14250         | 05CF239 | 72.7                     | 75.8      | PPAU         | stkwk                            | W              |               |               |                              | W                                |               | W              |     |                  |                      |
| 14260         | 05CF239 | 103.0                    | 106.1     | PPAU         | stkwk, Cp, Bn in vns             | W              |               |               |                              | W                                |               | W              |     |                  |                      |
| 14276         | 05CF239 | 142.4                    | 145.5     | ANPF         | stkwk, dis, Cp,Mb vns, Mb frct   | W              | W             |               |                              |                                  |               |                |     |                  |                      |
| 14295         | 05CF239 | 200.0                    | 203.0     | ANPF         | stkwk, Py vns                    | W              | W             |               |                              | W                                |               | W              |     |                  |                      |
| 14301         | 05CF240 | 9.1                      | 12.1      | ANNX         | STKWK, Mb Frct                   |                |               |               |                              | S                                |               |                |     |                  |                      |
| 14323         | 05CF240 | 66.7                     | 69.7      | PPAU         | STKWK, Cp-V                      | W              |               |               |                              | W                                |               |                |     |                  |                      |
| 14332         | 05CF240 | 93.9                     | 97.0      | PPAU         | STKWK, Mb-Frct                   | W              |               |               |                              | W                                |               | W              |     |                  |                      |
| 14345         | 05CF240 | 133.3                    | 136.4     | ANPF         | STKWK, Dis                       | W              |               |               |                              | W                                |               |                |     |                  |                      |
| 14348         | 05CF240 | 142.4                    | 145.5     | PPAU         | STKWK, Dis, Mb-Frct              | W              |               |               |                              | W                                |               |                |     | W                |                      |
| 14666         | 05CF245 | 51.5                     | 54.5      | BRVL         | STKWK, Dis, MB-Frct              | W              | W             |               |                              | W                                |               |                |     |                  |                      |
| 14685         | 05CF245 | 100.0                    | 103.0     | DIOR         | STKWK, Dis, MB-Frct              | W              |               |               |                              | M                                |               |                |     |                  |                      |
| 14685B        | 05CF245 | 100.0                    | 103.0     | DIOR         |                                  |                |               |               |                              |                                  |               |                |     |                  |                      |
| 14797         | 05CF243 | 9.1                      | 12.1      | PPAU         | STKWK, Dis, MB-Frct              | W              |               |               |                              | W                                |               |                |     |                  |                      |
| 14808         | 05CF243 | 42.4                     | 45.5      | FAUL         | STKWK, MB-Frct, SHEAR            | W              |               |               |                              | S                                |               |                |     |                  |                      |
| 14816         | 05CF243 | 66.7                     | 69.7      | PPAU         | STKWK, PY-Vns                    | W              |               |               |                              | М                                |               | W              |     |                  |                      |
| 14828         | 05CF243 | 103.0                    | 106.1     | PPAU         | STKWK, Dis, MB-Frct              | W              |               |               |                              | W                                |               |                |     |                  |                      |
| 14844         | 05CF243 | 142.4                    | 145.5     | ANDS         | STKWK, CP-Vn, Dis                | W              |               |               |                              |                                  |               |                |     |                  |                      |
| 14860         | 05CF243 | 190.9                    | 193.9     | PPAU         | STKWK, MB-Frct, CP-Frct          | W              |               |               |                              | W                                |               |                |     |                  | W                    |
| 14871         | 05CF243 | 224.2                    | 227.3     | ANLP         | STKWK, CP-Vn,Frct, Dis, SHR,     | W              | W             |               |                              | VV                               |               | W              |     | I                |                      |

Schaft Creek Project

# Project: Client: Data: Copper Fox Metals Inc. Sample Information

Comments: Samples collected for ABA, trace metal, and whole rock analysis On Feb 7'07 by Kevin Morin, MDAG.

|              |         | Lithology |           | Rock | Mineralization Style       |        |         |         | Alteratior | n Minerals  |         |                |    |          | %               |
|--------------|---------|-----------|-----------|------|----------------------------|--------|---------|---------|------------|-------------|---------|----------------|----|----------|-----------------|
| Sample<br>No | Hole Id | From (m)  | To<br>(m) | Code |                            | Ch     | Ep      | Bt      | Sericite   | K<br>K-spar | Si      | Hm<br>Hematite | Cb | Tm       | Mt<br>Magnetite |
|              |         | (11)      | ()        |      |                            | omonic | Epidoto | Diotite | Genote     | it opui     | Cillolo | Tiemano        |    | Tourname | Magnetite       |
| 14887        | 05CF243 | 263.6     | 266.7     | ANTF | STKWK, CP-Vn, Dis          | w      | W       |         |            |             |         | W              |    |          |                 |
| 14893        | 05CF247 | 12.1      | 15.2      | PPAU | Mal frct-1%, Cp dis        | W      |         |         |            |             |         |                |    |          | 5               |
| 14899        | 05CF247 | 30.3      | 33.3      | PPAU |                            | Х      |         |         |            |             |         | Х              |    |          |                 |
| 14908        | 05CF247 | 57.6      | 60.6      | ANLP | Cp,Bn qtz-cb stkwk, Cp dis | W      |         |         |            | W           |         |                |    |          |                 |
| 14917        | 05CF247 | 75.8      | 78.8      | PPPL | Bn dis, qtz-cb vn          | х      |         | Х       |            | W-M         |         |                |    |          |                 |
| 14925        | 05CF247 | 100.0     | 103.0     | ANLP | Cp qtz-cb vn, dis          | W      | Х       |         |            | Х           |         | W              |    |          | 3               |
|              |         |           |           |      |                            |        |         |         |            |             |         |                |    |          |                 |

| Rock Code | Legend:                                        | Mineral | Legend:         | Legend: |          |
|-----------|------------------------------------------------|---------|-----------------|---------|----------|
| ANDS      | Andesite                                       | Ch      | Chlorite        | Т       | Trace    |
| ANNX      | Altered Andesite                               | Ep      | Epidote         | W       | weak     |
| ANPF      | Plagioclase-phyric or Feldspar-phyric Andesite | Bt      | Biotite         | M       | moderate |
| ANPL/ANLF | P Andesitic Lapilli Tuff                       | Se      | Sericite        | S       | strong   |
| ANTF      | Andesitic Tuff                                 | K       | K-spar          |         |          |
| BRIV      | Intrusive Breccia or Felsic Igneous Breccia    | Si      | Silicic         |         |          |
| BRVL      | Volcanic Breccia                               | Hm      | Hematite        |         |          |
| BRXX      | Diorite Breccia                                | Mt      | Magnetite       |         |          |
| D/BS      | Diabase/Basic dyke                             | Tm      | Tourmaline      |         |          |
| DIOR      | Diorite                                        | Ср      | Chalcopyrite    |         |          |
| FAUL      | Faults                                         | Bn      | Bornite         |         |          |
| PNBX      | Pneumatolytic Breccia                          | Py      | Pyrite          |         |          |
| PPAU      | Plagioclase-Augite-phyric Andesite             | Mb      | Molybdenite     |         |          |
| PPFQ      | Quartz-Feldspar or Feldspar-Quartz Porphyry    | Oth     | See description |         |          |
| PPPL      | Plagioclase or Feldspar Porphyry               | Х       | mineral present |         |          |
| SHER      | Shear Zone / Faults                            |         |                 |         |          |
| TOBR      | Tourmaline Breccia                             |         |                 |         |          |

VN Vein Schaft Creek Project

Project: Client: Data: Copper Fox Metals Inc. Sample Information

Comments: Samples collected for ABA, trace metal, and whole rock analysis On Feb 7'07 by Kevin Morin, MDAG.

|         |              |          | Sulp     | hides %     |       | r Total    |                                                                                                                              |       |       |       |             |  |
|---------|--------------|----------|----------|-------------|-------|------------|------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------------|--|
| Sample  | Cp           | Bn       | Pv       | Mb          | Other | Total      | Total Sampling Notes                                                                                                         |       |       |       |             |  |
| No.     | Chalcopyrite | Bornite  | Pvrite   | Molvbdenite | Othor | rotai      |                                                                                                                              | (%)   | (%)   | (a/t) | (a/t)       |  |
| -       |              |          | ,        | .,          |       |            |                                                                                                                              | ()    | ()    | (3-7  | (3-7        |  |
| 4 45 45 | Ŧ            |          | Ŧ        |             |       | -          |                                                                                                                              | 0.440 | 0.004 | 0.00  | 0.4         |  |
| 14545   |              |          | I        |             |       |            | Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and times                    | 0.113 | 0.001 | 0.02  | 0.4         |  |
| 14565   |              |          | 10       | 0.5         |       | 0.5        | Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and thes                     | 0.289 | 0.002 | 0.14  | 0.6         |  |
| 14371   | 2.0<br>T     |          | 1.0      | 0.5         |       | 3.5        | Subsample collected from top of rejects stored in white plastic bucket, dry, light grey gravel and lines                     | 0.593 | 0.011 | 0.13  | 1.0         |  |
| 14578   | 1            |          | 1.0      |             |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, light grey gravel and lines (see 14578b)        | 0.293 | 0.002 | 0.04  | 0.7         |  |
| 143760  |              |          | т        |             |       | т          | Subsample collected from bottom or rejects stored in white plastic bucket, day, light grey gravel and lines (see 14578)      | 0.075 | 0.005 | 0.00  | 0.2         |  |
| 14090   | 0.5          |          | 10       | 0.5         |       | 20         | Subsample collected from top of rejects stored in white plastic bucket, dry, medium grey graver and mes                      | 0.075 | 0.005 | 0.02  | 0.3         |  |
| 14009   | 0.5<br>T     |          | 1.0      | 0.5         |       | 2.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, light grey gravel and times                     | 0.213 | 0.008 | 0.07  | 0.4         |  |
| 14095   |              |          | 0.5      | 0.5         |       | 0.5        | Subsample collected from top of rejects stored in white plastic bucket, dry, light grey gravel and times                     | 0.162 | 0.059 | 0.13  | 0.7         |  |
| 14742   |              | т        | 0.5      | 0.5<br>T    |       | 0.5        | Subsample collected from top of rejects stored in white plastic bucket, dry, ngm grey gravel and lines                       | 0.223 | 0.071 | 0.17  | 1.0         |  |
| 14990   | - <u>+</u>   | -<br>-   | 0.5      | 0.5         |       | 0.5        | Subsample collected from top of rejects stored in white plastic bucket, diy, medium grey graver and mes                      | 0.109 | 0.007 | 0.14  | 0.5         |  |
| 15002   | 0.5          | і<br>т   | т        | 0.5         |       | 0.5        | Subsample collected from top of rejects stored in white plastic bucket, moist, dark grey gravel and lines                    | 0.110 | 0.008 | 0.14  | 0.0         |  |
| 15070   | 0.5          |          |          | 0.5<br>T    |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, saturated, medium grey gravel and mes                | 0.157 | 0.002 | 0.09  | 0.0         |  |
| 15079   | 0.5          | т<br>Т   |          | 0.5         |       | 0.5        | Subsample collected from top of rejects stored in white plastic bucket, dry, medium grey gravel and lines                    | 0.224 | 0.003 | 0.15  | 1.0         |  |
| 15007   | 1.0<br>T     | 0.5      |          | 0.5         |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, medium grey gravel and fines                    | 0.200 | 0.000 | 0.20  | 1.0         |  |
| 15091   | 0.5          | 0.5      |          | 0.5         |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, medium grey gravel and lines                    | 0.234 | 0.011 | 0.21  | 1.5         |  |
| 15908   | 0.5          | 0.5      |          | 0.5         |       | 1.5        | Subsample collected from top of rejects stored in white plastic bucket, dry, medium grey gravel and lines                    | 0.421 | 0.032 | 0.30  | 2.4         |  |
| 13911   | 0.5<br>T     | 0.5      |          | 0.5         |       | 1.5        | Subsample collected from top of rejects stored in white plastic bucket, dry, medium grey gravel and lines                    | 0.179 | 0.017 | 0.15  | 1.0         |  |
| 14130   |              | ~1       |          |             |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, div, grey and plank (granite?) gravel and fines      | 0.555 | 0.000 | 0.39  | 3.3         |  |
| 14144   | '            | ~ I<br>T |          |             |       | т.0<br>Т   | Subsample collected from top of rejects stored in white plastic bucket, dry, grey and prink (granner) graver and mines       | 0.290 | 0.000 | 0.20  | 2.2         |  |
| 14140   |              | Ť        |          | 1.0         |       | 10         | Subsample collected from top of rejects stored in white plastic bucket, saturated, medium grey gravel and mites              | 0.275 | 0.020 | 0.17  | 1.2         |  |
| 14150   |              |          |          | 1.0         |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, grey and plink (grainie:) grave and intes       | 0.204 | 0.005 | 0.07  | -0.5        |  |
| 14102   | 1.0          | 1.0      |          | -1          |       | -2         | Subsample collected from top of rejects stored in white plastic bucket, dry, light gray gravel and thes                      | 0.115 | 0.001 | 0.09  | <0.5        |  |
| 14105   | 1.0          | 1.0      | 10       |             |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, dry dry gravel and fines                        | 0.300 | 0.010 | 0.10  | -0.5        |  |
| 14010   | 2.0          |          | т.0<br>Т |             |       | 2.0        | Subsample collected from top of rejects stored in white plastic bucket, uty, dark grey gravel and fines                      | 0.147 | 0.007 | 0.00  | <0.5        |  |
| 14021   | 2.0          |          |          |             |       | 2.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, includin giety gravel and mes                   | 0.173 | 0.030 | 0.03  | <0.5<br>5 Ω |  |
| 14030   | 4.0          |          |          |             |       | 4.0        | Subsample collected from top of rejects stored in white plastic bucket, uty, dark grey gravel and times                      | 0.109 | 0.001 | 0.04  | 2.0         |  |
| 14045   | 0.0<br>T_1   |          |          |             |       | 2.0<br>T_1 | Subsample collected from top of rejects stored in white plastic bucket, dry, dark grey gravel and mice                       | 0.133 | 0.034 | 0.13  | 2.0         |  |
| 14000   | 1-1          |          |          |             |       | 10         | Subsample collected from top of rejects stored in white plastic bucket, uty, medium grey glavel and miles                    | 0.200 | 0.032 | 0.04  | <0.5        |  |
| 14007   | т.0<br>Т     |          | т        |             |       | т.0<br>Т   | Subsample collected from top of rejects stored in white plastic bucket, saturated, dark grey gravel and fines                | 0.247 | 0.014 | 0.05  | <0.5        |  |
| 14070   | ι τ΄         |          | 10       |             |       | 10         | Subsample collected from top of rejects stored in white plastic bucket, dry, dark grey gravel and fines                      | 0.173 | 0.000 | 0.10  | <0.5        |  |
| 14005   | 0.5          |          | 1.0      |             |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, dark grey gravel and fines                      | 0.150 | 0.001 | 0.01  | 1 1         |  |
| 14000   | 1.0          |          | т.       |             |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, dry, raw and pick (granita) and mos                  | 0.107 | 0.002 | 0.02  | 1.1         |  |
| 14232   | 0.5          | 10       | 0.5      | 0.5         |       | 2.5        | Subsample collected from top of rejects stored in white plastic bucket, dry, gety and gravel and fines; how weight remaining | 0.325 | 0.022 | 0.02  | 1.0         |  |
| 14250   | 0.5          | 1.0      | 0.5      | 0.5         |       | 2.5        | Subsample collected from top of rejects stored in white plastic bucket, any, medium grey gravel and fines                    | 0.300 | 0.038 | 0.33  | 2.0         |  |
| 14260   | 1.0          | 0.5      | 0.5      | T           |       | 2.0        | Subsample collected from top of rejects stored in white plastic bucket, and they dark are gravel and times                   | 0.505 | 0.000 | 0.00  | 3.1         |  |
| 14276   | 2.0          | Т        | 0.5      | 1.0         |       | 3.5        | Subsample collected from top of rejects stored in white plastic bucket, any sum gog garden and mess low weight remaining     | 0.136 | 0.003 | <0.01 | 1.0         |  |
| 14295   | 0.5          | Ť        | 0.5      | Т           |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket, dy, medium grey gravel and fines                     | 0.250 | 0.001 | 0.07  | 0.5         |  |
| 14301   | Т            | •        | Т        | 0.5         |       | 0.5        | Subsample collected from top of rejects stored in white plastic bucket, dry new and pink (granite?) gravel and fines         | 0.241 | 0.023 | 0.09  | 0.6         |  |
| 14323   | 0.5          | 0.5      | Ť        | Т           |       | 1.0        | Subsample collected from top of rejects stored in white plastic bucket: dv. light arev aravel and fines                      | 0.200 | 0.005 | 0.18  | 1.6         |  |
| 14332   | 0.5          | 0.5      | т        | 10          |       | 2.0        | Subsample collected from top of rejects stored in white plastic bucket: dry light grey dravel and fines                      | 0.336 | 0.010 | 0.16  | 1.5         |  |
| 14345   | 2.0          | 0.5      | 0.5      | 0.5         |       | 3.5        | Subsample collected from top of rejects stored in white plastic bucket: dry. light grey gravel and fines                     | 0.559 | 0.020 | 0.19  | 2.4         |  |
| 14348   | 1.0          | 0.5      | 0.5      | 0.5         |       | 2.5        | Subsample collected from top of rejects stored in white plastic bucket: dv, light gravel and fines                           | 0.461 | 0.013 | 0.13  | 1.4         |  |
| 14666   | 0.5          |          | 1.0      | Т           |       | 1.5        | Subsample collected from top of rejects stored in white plastic bucket: dry, medium grey gravel and fines                    | 0.163 | 0.002 | 0.07  | 0.3         |  |
| 14685   | 0.5          |          | 2.0      | Ť           |       | 2.5        | Subsample collected from top of rejects stored in white plastic bucket: dry, medium grey gravel and fines (see 14685B)       | 0.455 | 0.013 | 0.18  | 0.6         |  |
| 14685B  |              |          |          |             |       |            | Subsample collected from bottom of rejects stored in white plastic bucket: drv. medium grey gravel and fines (see 14685)     |       |       |       |             |  |
| 14797   | 0.5          | 0.5      |          | 0.5         |       | 1.5        | Subsample collected from top of rejects stored in white plastic bucket: drv. medium grev gravel and fines                    | 0.184 | 0.034 | 0.10  | 1.0         |  |
| 14808   | 0.5          | 0.5      |          | 2.0         |       | 3.0        | Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines                    | 0.257 | 0.040 | 0.28  | 1.7         |  |
| 14816   | Т            | 0.5      | 1.0      | Т           |       | 1.5        | Subsample collected from top of rejects stored in white plastic bucket; dry, light grey gravel and fines                     | 0.387 | 0.008 | 0.57  | 2.3         |  |
| 14828   | 0.5          | 2.0      |          | 0.5         |       | 3.0        | Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines                    | 0.317 | 0.019 | 0.74  | 2.3         |  |
| 14844   | 1.0          | 0.5      | 0.5      | Т           |       | 2.0        | Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines                    | 0.249 | 0.010 | 0.16  | 1.0         |  |
| 14860   | 1.0          | 0.5      |          | 0.5         |       | 2.0        | Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines                    | 0.373 | 0.035 | 0.25  | 2.5         |  |
| 14871   | 2.0          | 0.5      |          | Т           |       | 2.5        | Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines                    | 0.365 | 0.034 | 0.10  | 0.7         |  |
| •       | •            |          |          |             |       |            |                                                                                                                              | •     |       |       |             |  |

Schaft Creek Project

Project: Client: Data: Copper Fox Metals Inc. Sample Information

Comments: Samples collected for ABA, trace metal, and whole rock analysis On Feb 7'07 by Kevin Morin, MDAG.

| Sample<br>No.                                      | Cp<br>Chalcopyrite | Bn<br>Bornite | <b>Sulp</b><br>Py<br>Pyrite | ohides %<br>Mb<br>Molybdenite | Other | Total                  | Sampling Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cu<br>(%)                                          | Assay<br>Mo<br>(%)                                | <b>Au</b><br>(g/t)                           | Ag<br>(g/t)                            |
|----------------------------------------------------|--------------------|---------------|-----------------------------|-------------------------------|-------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------|
| 14887<br>14893<br>14899<br>14908<br>14917<br>14925 | 0.5<br>1.5<br>T    | T<br>0.5      | 0.5                         |                               |       | 1.0<br>0.5<br>0.5<br>T | Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines<br>Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines<br>Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines<br>Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines<br>Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines<br>Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines<br>Subsample collected from top of rejects stored in white plastic bucket; dry, medium grey gravel and fines | 0.196<br>0.164<br>0.032<br>0.113<br>0.361<br>0.182 | 0.00<br>0.008<br>0.002<br>0.005<br>0.001<br>0.001 | 0.07<br>0.12<br>0.03<br>0.08<br>0.31<br>0.11 | 0.7<br>0.9<br>0.7<br>0.7<br>2.5<br>1.0 |

| Mineral | Legend:         | Legen | nd:      |
|---------|-----------------|-------|----------|
| Ch      | Chlorite        | Т     | Trace    |
| Ep      | Epidote         | W     | weak     |
| Bt      | Biotite         | М     | moderate |
| Se      | Sericite        | S     | strong   |
| K       | K-spar          |       |          |
| Si      | Silicic         |       |          |
| Hm      | Hematite        |       |          |
| Mt      | Magnetite       |       |          |
| Tm      | Tourmaline      |       |          |
| Ср      | Chalcopyrite    |       |          |
| Bn      | Bornite         |       |          |
| Py      | Pyrite          |       |          |
| Mb      | Molybdenite     |       |          |
| Oth     | See description |       |          |
| Х       | mineral present |       |          |

APPENDIX B. Compiled Acid-Base Accounting and Total-Element Analyses for Rock at the Schaft Creek Project For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample          |         | Lithology     |              | Centre of |          |              | Rock  | Rock Code                                                  |                                |
|-----------------|---------|---------------|--------------|-----------|----------|--------------|-------|------------------------------------------------------------|--------------------------------|
| ld.             | Hole Id | From          | То           | Interval  | Interval | Zone         | Code  | Description                                                | Mineralization Style           |
|                 |         | (m)           | (m)          | (m)       | (m)      |              |       |                                                            |                                |
|                 |         |               |              |           |          |              |       |                                                            |                                |
| 14018           | 05CF234 | 18.2          | 21.2         | 3.03      | 19.70    | West Breccia | PPFQ  | Quartz-Feldspar or Feldspar-Quartz Porphyry                | Disseminated + Vein            |
| 14021           | 05CF234 | 27.3          | 30.3         | 3.03      | 28.79    | West Breccia | TOBR  | Tourmaline Breccia                                         | Hydro Bx Matrix (vein) + diss  |
| 14036           | 05CF234 | 63.6          | 66.7         | 3.03      | 65.15    | West Breccia | TOBR  | Tourmaline Breccia                                         | Stockwork + disseminated       |
| 14043           | 05CF234 | 84.8          | 87.9         | 3.03      | 86.36    | West Breccia | TOBR  | Tourmaline Breccia                                         | Stockwork + disseminated       |
| 14060           | 05CF234 | 136.4         | 139.4        | 3.03      | 137.88   | West Breccia | BRIV  | Intrusive Breccia or Felsic Igneous Breccia                | Disseminated in matrix         |
| 14067           | 05CF234 | 157.6         | 160.6        | 3.03      | 159.09   | West Breccia | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | Disseminated, vein             |
| 14076           | 05CF235 | 18.2          | 21.2         | 3.03      | 19.70    | West Breccia | ANDS  | Andesite                                                   | STKWK, Dis                     |
| 14083           | 05CF235 | 39.4          | 42.4         | 3.03      | 40.91    | West Breccia | ANDS  | Andesite                                                   | STKWK                          |
| 14099           | 05CF235 | 87.9          | 90.9         | 3.03      | 89.39    | West Breccia | PPFQ  | Quartz-Feldspar or Feldspar-Quartz Porphyry                | Dis                            |
| 14103           | 05CF235 | 100.0         | 103.0        | 3.03      | 101.52   | West Breccia | TOBR  | Tourmaline Breccia                                         | Dis                            |
| 14130           | 05CF236 | 18.2          | 21.2         | 3.03      | 19.70    | Liard Main   | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | Cu diss & qtz veins            |
| 14144           | 05CF236 | 60.6          | 63.6         | 3.03      | 62.12    | Liard Main   | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | Cu diss & veins                |
| 14148           | 05CF236 | 72.7          | 75.8         | 3.03      | 74.24    | Liard Main   | FAUL  | Faults                                                     | Cu diss                        |
| 14156           | 05CF236 | 87.9          | 90.9         | 3.03      | 89.39    | Liard Main   | FAUL  | Faults                                                     | Mb fracture                    |
| 14162           | 05CF236 | 106.1         | 109.1        | 3.03      | 107.58   | Liard Main   | D/BS  | Diabase/Basic dyke                                         |                                |
| 14169           | 05CF236 | 127.3         | 130.3        | 3.03      | 128.79   | Liard Main   | PPFQ  | Quartz-Feldspar or Feldspar-Quartz Porphyry                | Cu, Mb qtz veins & diss        |
| 14232           | 05CF239 | 27.3          | 30.3         | 3.03      | 28.79    | Liard Main   | PPAU  | Plagioclase-Augite-phyric Andesite                         | dis, stkwk, bx vns, Mb frct    |
| 14250           | 05CF239 | 72.7          | 75.8         | 3.03      | 74.24    | Liard Main   | PPAU  | Plagioclase-Augite-phyric Andesite                         | stkwk                          |
| 14260           | 05CF239 | 103.0         | 106.1        | 3.03      | 104.55   | Liard Main   | PPAU  | Plagioclase-Augite-phyric Andesite                         | stkwk, Cp, Bn in vns           |
| 14276           | 05CF239 | 142.4         | 145.5        | 3.03      | 143.94   | Liard Main   | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | stkwk, dis, Cp,Mb vns, Mb frct |
| 14295           | 05CF239 | 200.0         | 203.0        | 3.03      | 201.52   | Liard Main   | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | stkwk, Py vns                  |
| 14301           | 05CF240 | 9.1           | 12.1         | 3.03      | 10.61    | Liard Main   | ANNX  | Altered Andesite                                           | STKWK, Mb Frct                 |
| 14323           | 05CF240 | 66.7          | 69.7         | 3.03      | 68.18    | Liard Main   | PPAU  | Plagioclase-Augite-phyric Andesite                         | STKWK, Cp-V                    |
| 14332           | 05CF240 | 93.9          | 97.0         | 3.03      | 95.45    | Liard Main   | PPAU  | Plagioclase-Augite-phyric Andesite                         | STKWK, Mb-Frct                 |
| 14345           | 05CF240 | 133.3         | 136.4        | 3.03      | 134.85   | Liard Main   | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | STKWK, Dis                     |
| 14348           | 05CF240 | 142.4         | 145.5        | 3.03      | 143.94   | Liard Main   | PPAU  | Plagioclase-Augite-phyric Andesite                         | STKWK, Dis, Mb-Frct            |
| 14797           | 05CF243 | 9.1           | 12.1         | 3.03      | 10.61    | Liard Main   | PPAU  | Plagioclase-Augite-phyric Andesite                         | STRWK, DIS, MB-Frct            |
| 14808           | 05CF243 | 42.4          | 45.5         | 3.03      | 43.94    | Liard Main   | FAUL  | Faults                                                     | STKWK, MB-Frct, SHEAR          |
| 14816           | 05CF243 | 66.7          | 69.7         | 3.03      | 68.18    | Liard Main   | PPAU  | Plagioclase-Augite-phyric Andesite                         | STRVVK, PY-VNS                 |
| 14828           | 05CF243 | 103.0         | 106.1        | 3.03      | 104.55   | Liard Main   | PPAU  | Plaglociase-Augite-phyric Andesite                         | STRWK, DIS, MB-FICT            |
| 14844           | 05CF243 | 142.4         | 145.5        | 3.03      | 143.94   | Liard Main   | ANDS  | Andesite                                                   | STRWK, CP-Vn, DIS              |
| 14080           | 05CF243 | 190.9         | 193.9        | 3.03      | 192.42   | Liard Main   |       |                                                            | STRWK, MB-FICT, CP-FICT        |
| 14871           | 05CF243 | 224.2         | 221.3        | 3.03      | 225.76   | Liard Main   |       |                                                            | STRWK, CP-VN, Frct, DIS, SHR,  |
| 14007           | 050F243 | 203.0         | 200.7        | 3.03      | 200.10   | Liard Main   |       | Andesitic Tuff                                             | STRVIR, CP-VII, DIS            |
| 14689           | 05CF244 | 9.1           | 12.1         | 3.03      | 10.61    | Liard Main   | PPFQ  | Quartz-Felospar or Felospar-Quartz Porphyry                | Py,Cp, dis, co-qtz vn, frct    |
| 14095           | 050F244 | 27.3          | 30.3         | 3.03      | 20.79    | Liard Main   |       |                                                            | Py,Cp, uis                     |
| 14/42           | 050F244 | 160.6<br>F1 F | 103.0<br>EAE | 3.03      | F2 02    | Liard Main   |       |                                                            |                                |
| 14606           | 05CF245 | 100.0         | 102.0        | 2.03      | 101 52   | Liard Main   |       | Voicanic Dieccia                                           | STKWK, DIS, MB-FICI            |
| 14000<br>14695D | 050F245 | 100.0         | 103.0        | 3.03      | 101.52   | Liard Main   |       | Diorito                                                    | STRVIR, DIS, IVID-FICI         |
| 140030          | 05CF245 | 100.0         | 103.0        | 2.03      | 12.64    | Liard Main   |       | Diolite<br>Blagiaglassa phyria ar Foldspar phyria Andosita | By Co. dia                     |
| 14545           | 05CF240 | 63.6          | 10.Z<br>66.7 | 3.03      | 65 15    | Liard Main   |       | Plagioclase-phyric or Feldspar-phyric Andesite             | ry, Cp uis                     |
| 14505           | 05CF246 | 81.8          | 84.8         | 3.03      | 83.33    | Liard Main   | DDDI  | Plagioclase or Feldenar Porphyric Andesite                 | Py Cn dis Mb chatz-ch yn       |
| 14578           | 05CE246 | 103.0         | 106.1        | 3.03      | 104 55   | Liard Main   | PPALL | Plagioclase Augite-phyric Andesite                         | Py dis Cn ch stokwk            |
| 14578B          | 05CF246 | 103.0         | 106.1        | 3.03      | 104.55   | Liard Main   |       | Plagioclase-Augite-phyric Andesite                         | r y dis, op on siekwk          |
| 14598           | 05CE246 | 154.5         | 157.6        | 3.03      | 156.06   | Liard Main   | PPALI | Plagioclase Augite phyric Andesite                         | Cn Py dis                      |
| 14893           | 05CF247 | 12.1          | 15.2         | 3.03      | 13 64    | Liard Main   | PPALI | Plagioclase-Augite-phyric Andesite                         | Mal frct-1% Cp dis             |
| 14899           | 05CF247 | 30.3          | 33.3         | 3.03      | 31.82    | Liard Main   | PPALI | Plagioclase-Augite-phyric Andesite                         |                                |
| 14908           | 05CF247 | 57.6          | 60.6         | 3.03      | 59.09    | Liard Main   | ANIP  | Andesitic LapilliTuff                                      | Cp Bn atz-ch stkwk. Cp dis     |
| 14917           | 05CF247 | 75.8          | 78.8         | 3.03      | 77.27    | Liard Main   | PPPI  | Plagioclase or Feldspar Porphyry                           | Bn dis. atz-cb vn              |
| 14925           | 05CF247 | 100.0         | 103.0        | 3.03      | 101 52   | Liard Main   |       | Andesitic LapilliTuff                                      | Cp atz-cb vn. dis              |
| 14998           | 05CF248 | 36.4          | 39,4         | 3.03      | 37.88    | Liard Main   | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | STKWK                          |
| 15862           | 05CF248 | 78.8          | 81.8         | 3.03      | 80.30    | Liard Main   | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | STKWK, MB-Frct                 |
| 15870           | 05CF248 | 103.0         | 106.1        | 3.03      | 104.55   | Liard Main   | ANLP  | Andesitic LapilliTuff                                      | STKWK                          |
| 15879           | 05CF248 | 130.3         | 133.3        | 3.03      | 131.82   | Liard Main   | BRVL  | Volcanic Breccia                                           | STKWK                          |
| 15887           | 05CF248 | 145.5         | 148.5        | 3.03      | 146.97   | Liard Main   | ANTE  | Andesitic Tuff                                             | STKWK, Dis                     |
| 15891           | 05CF248 | 157.6         | 160.6        | 3.03      | 159.09   | Liard Main   | ANPF  | Plagioclase-phyric or Feldspar-phyric Andesite             | STKWK                          |
| 15908           | 05CF248 | 209.1         | 212.1        | 3.03      | 210.61   | Liard Main   | PPFQ  | Quartz-Feldspar or Feldspar-Quartz Porphyry                | STKWK, MB-Frct, Dis, Flt       |

| Project:  | Schaft Creek                                                                                                    |
|-----------|-----------------------------------------------------------------------------------------------------------------|
| Client:   | Copper Fox Metals Inc.                                                                                          |
| Data:     | Sample Information                                                                                              |
| Comments: | Sampled by MDAG on Feb 7'07.                                                                                    |
|           | For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps. |

| Sample<br>Id. | Hole Id | Lithology<br>From | То    | Interval | Centre of<br>Interval | Zone       | Rock<br>Code | Rock Code<br>Description                       | Mineralization Style |
|---------------|---------|-------------------|-------|----------|-----------------------|------------|--------------|------------------------------------------------|----------------------|
|               |         | (m)               | (m)   | (m)      | (m)                   |            |              |                                                |                      |
| 15911         | 05CF248 | 218.2             | 221.2 | 3.03     | 219.70                | Liard Main | ANDS         | Andesite                                       | STKWK, Dis           |
|               |         |                   |       |          |                       |            | Rock Code L  | _egend:                                        |                      |
|               |         |                   |       |          |                       |            | ANDS         | Andesite                                       |                      |
|               |         |                   |       |          |                       |            | ANNX         | Altered Andesite                               |                      |
|               |         |                   |       |          |                       |            | ANPF         | Plagioclase-phyric or Feldspar-phyric Andesite |                      |
|               |         |                   |       |          |                       |            | ANPL/ANLP    | Andesitic Lapilli Tuff                         |                      |
|               |         |                   |       |          |                       |            | ANTF         | Andesitic Tuff                                 |                      |
|               |         |                   |       |          |                       |            | BRIV         | Intrusive Breccia or Felsic Igneous Breccia    |                      |
|               |         |                   |       |          |                       |            | BRVL         | Volcanic Breccia                               |                      |
|               |         |                   |       |          |                       |            | BRXX         | Diorite Breccia                                |                      |
|               |         |                   |       |          |                       |            | D/BS         | Diabase/Basic dyke                             |                      |
|               |         |                   |       |          |                       |            | DIOR         | Diorite                                        |                      |
|               |         |                   |       |          |                       |            | FAUL         | Faults                                         |                      |
|               |         |                   |       |          |                       |            | PNBX         | Pneumatolytic Breccia                          |                      |
|               |         |                   |       |          |                       |            | PPAU         | Plagioclase-Augite-phyric Andesite             |                      |
|               |         |                   |       |          |                       |            |              | Quartz-Feidspar or Feidspar-Quartz Porphyry    |                      |
|               |         |                   |       |          |                       |            |              | Shear Zone / Faults                            |                      |
|               |         |                   |       |          |                       |            | TOBR         | Tourmaline Breccia                             |                      |
|               |         |                   |       |          |                       |            | VN           | Vein                                           |                      |

For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample |           |          |         | Alteration | Minerals |         |          |     |            | %         |              |         | Sulphi   | des %       |       |       |        | Assay | / Data |            |
|--------|-----------|----------|---------|------------|----------|---------|----------|-----|------------|-----------|--------------|---------|----------|-------------|-------|-------|--------|-------|--------|------------|
| ld.    | Ch        | Ep       | Bt      | Se         | К        | Si      | Hm       | Cb  | Tm         | Mt        | Ср           | Bn      | Py       | Mb          | Other | Total | Cu     | Мо    | Au     | Ag         |
|        | Chlorite  | Epidote  | Biotite | Sericite   | K-spar   | Silicic | Hematite |     | Tourmaline | Magnetite | Chalcopyrite | Bornite | Pyrite   | Molybdenite |       |       | (%)    | (%)   | (g/t)  | (g/t)      |
| 14019  | 14/       | 14/      |         | 14/        | 14/      |         |          |     |            |           |              |         | 1.0      |             |       | 1.0   | 0 1 47 | 0.007 | 0.06   | -0 F       |
| 14016  | M         | VV<br>W/ |         | M          | M        | м       |          |     | x          |           | 2.0          |         | т.0<br>Т |             |       | 2.0   | 0.147  | 0.007 | 0.06   | <0.5       |
| 14036  | M         | **       |         | S          | M        | M       |          |     | X          |           | 4.0          |         |          |             |       | 4.0   | 0.170  | 0.050 | 0.03   | 5.8        |
| 14043  | Ŵ         | W        |         | M          | M        | Ŵ       |          |     | X          |           | 0.0          |         |          |             |       | 2.0   | 0.153  | 0.034 | 0.15   | 2.0        |
| 14060  | M         | M        |         | M          | M?       |         | M?       |     | ~          |           | T-1          |         |          |             |       | T-1   | 0.280  | 0.032 | 0.04   | < 0.5      |
| 14067  | S         | W        |         | S          | W        | W       |          |     |            |           | 1.0          |         |          |             |       | 1.0   | 0.247  | 0.014 | 0.03   | < 0.5      |
| 14076  | W         |          |         |            |          |         |          |     |            |           | т            |         | т        |             |       | Т     | 0.173  | 0.005 | 0.16   | <0.5       |
| 14083  | W         | W        |         |            |          |         |          |     |            |           | Т            |         | 1.0      |             |       | 1.0   | 0.130  | 0.001 | 0.01   | <0.5       |
| 14099  | W         |          |         |            |          |         |          |     |            |           | 0.5          |         | 1.0      |             |       | 1.0   | 0.157  | 0.002 | 0.02   | 1.1        |
| 14103  | W         | W        |         |            | W        |         |          |     | М          |           | 1.0          |         | Т        |             |       | 1.0   | 0.266  | 0.022 | 0.02   | 1.0        |
| 14130  |           |          |         |            | S        | W       |          |     |            |           | Т            | ~1      |          |             |       | 1.0   | 0.555  | 0.008 | 0.39   | 3.3        |
| 14144  | M         |          |         |            | M-S      | W       | M        |     |            |           | Т            | ~1      |          |             |       | 1.0   | 0.290  | 0.008 | 0.20   | 2.2        |
| 14148  | S         |          |         |            | S        |         | VV       |     |            |           |              | 1<br>-  |          | 4.0         |       |       | 0.275  | 0.020 | 0.17   | 1.2        |
| 14155  |           |          |         |            | VV       |         |          |     |            | 14/       |              | I       |          | 1.0         |       | 1.0   | 0.204  | 0.005 | 0.07   | 1.0        |
| 14102  |           |          |         |            | MC       |         |          |     |            | vv        | 1.0          | 1.0     |          | -1          |       | -2    | 0.115  | 0.051 | 0.09   | <0.5       |
| 14109  |           |          |         |            | W/-3     |         |          |     |            |           | 0.5          | 1.0     | 0.5      | 0.5         |       | 25    | 0.300  | 0.010 | 0.10   | 3.0<br>1.8 |
| 14250  | W         |          |         |            | Ŵ        |         | W        |     |            |           | 0.5          | 1.0     | 0.5      | 0.5         |       | 2.5   | 0.320  | 0.038 | 0.21   | 2.0        |
| 14260  | Ŵ         |          |         |            | Ŵ        |         | Ŵ        |     |            |           | 1.0          | 0.5     | 0.5      | Т           |       | 2.0   | 0.505  | 0.016 | 0.9    | 3.1        |
| 14276  | W         | W        |         |            |          |         |          |     |            |           | 2.0          | Т       | 0.5      | 1.0         |       | 3.5   | 0.136  | 0.003 | <0.01  | 1.0        |
| 14295  | W         | W        |         |            | W        |         | W        |     |            |           | 0.5          | т       | 0.5      | т           |       | 1.0   | 0.250  | 0.001 | 0.07   | 0.5        |
| 14301  |           |          |         |            | S        |         |          |     |            |           | Т            |         | Т        | 0.5         |       | 0.5   | 0.241  | 0.023 | 0.09   | 0.6        |
| 14323  | W         |          |         |            | W        |         |          |     |            |           | 0.5          | 0.5     | Т        | Т           |       | 1.0   | 0.200  | 0.005 | 0.18   | 1.6        |
| 14332  | W         |          |         |            | W        |         | W        |     |            |           | 0.5          | 0.5     | Т        | 1.0         |       | 2.0   | 0.336  | 0.010 | 0.16   | 1.5        |
| 14345  | W         |          |         |            | W        |         |          |     |            |           | 2.0          | 0.5     | 0.5      | 0.5         |       | 3.5   | 0.559  | 0.020 | 0.19   | 2.4        |
| 14348  | W         |          |         |            | W        |         |          |     | W          |           | 1.0          | 0.5     | 0.5      | 0.5         |       | 2.5   | 0.461  | 0.013 | 0.13   | 1.4        |
| 14797  | W         |          |         |            | W        |         |          |     |            |           | 0.5          | 0.5     |          | 0.5         |       | 1.5   | 0.184  | 0.034 | 0.10   | 1.0        |
| 14808  | VV        |          |         |            | S        |         | 14/      |     |            |           | 0.5          | 0.5     | 4.0      | 2.0         |       | 3.0   | 0.257  | 0.040 | 0.28   | 1.7        |
| 14816  | VV<br>M   |          |         |            |          |         | vv       |     |            |           | 1            | 0.5     | 1.0      | 1           |       | 1.5   | 0.387  | 0.008 | 0.57   | 2.3        |
| 14626  | VV<br>\\/ |          |         |            | vv       |         |          |     |            |           | 0.5          | 2.0     | 0.5      | 0.5<br>T    |       | 3.0   | 0.317  | 0.019 | 0.74   | 2.3        |
| 14680  | W         |          |         |            | w        |         |          |     |            | \M/       | 1.0          | 0.5     | 0.5      | 0.5         |       | 2.0   | 0.243  | 0.010 | 0.10   | 2.5        |
| 14871  | Ŵ         | w        |         |            | Ŵ        |         | W        |     |            | **        | 2.0          | 0.5     |          | 0.5<br>T    |       | 2.0   | 0.365  | 0.034 | 0.20   | 0.7        |
| 14887  | Ŵ         | Ŵ        |         |            |          |         | Ŵ        |     |            |           | 0.5          | 0.0     | 0.5      | •           |       | 1.0   | 0.196  | 0.00  | 0.07   | 0.7        |
| 14689  | W         |          |         | W          | S        |         | X        |     |            |           | 0.5          |         | 1.0      | 0.5         |       | 2.0   | 0.213  | 0.008 | 0.07   | 0.4        |
| 14695  | M-S       |          |         |            | W        |         | W        |     |            | Т         | Т            |         | 0.5      |             |       | 0.5   | 0.182  | 0.059 | 0.13   | 0.7        |
| 14742  | W         |          |         |            | W        |         |          | W   |            | 1         | Т            |         |          | 0.5         |       | 0.5   | 0.223  | 0.071 | 0.17   | 1.0        |
| 14666  | W         | W        |         |            | W        |         |          |     |            |           | 0.5          |         | 1.0      | т           |       | 1.5   | 0.163  | 0.002 | 0.07   | 0.3        |
| 14685  | W         |          |         |            | М        |         |          |     |            |           | 0.5          |         | 2.0      | Т           |       | 2.5   | 0.455  | 0.013 | 0.18   | 0.6        |
| 14685B |           |          |         |            |          |         |          |     |            |           |              |         |          |             |       |       |        |       |        |            |
| 14545  | W-M       |          |         |            |          |         | W        |     |            |           | T            |         | Т        |             |       | T     | 0.113  | 0.001 | 0.02   | 0.4        |
| 14565  | VV        |          |         |            | VV       |         | W        |     |            |           |              |         | 4.0      | 0.5         |       |       | 0.289  | 0.002 | 0.14   | 0.6        |
| 14571  |           |          |         |            |          |         | ×        |     |            |           | 2.0<br>T     |         | 1.0      | 0.5         |       | 3.5   | 0.593  | 0.011 | 0.13   | 1.8        |
| 14578B | VV-IVI    |          |         |            | VV-IVI   |         | ^        |     |            |           | I            |         | 1.0      |             |       | 1.0   | 0.293  | 0.002 | 0.04   | 0.7        |
| 14598  | м         |          |         |            |          |         |          |     |            | 5         | т            |         | т        |             |       | т     | 0.075  | 0.005 | 0.02   | 0.3        |
| 14893  | Ŵ         |          |         |            |          |         |          |     |            | 5         |              |         |          |             |       |       | 0.164  | 0.008 | 0.12   | 0.9        |
| 14899  | X         |          |         |            |          |         | Х        |     |            | •         |              |         |          |             |       |       | 0.032  | 0.002 | 0.03   | 0.7        |
| 14908  | W         |          |         |            | W        |         |          |     |            |           | 1.5          | т       |          |             |       | 0.5   | 0.113  | 0.005 | 0.08   | 0.7        |
| 14917  | Х         |          | Х       |            | W-M      |         |          |     |            |           |              | 0.5     |          |             |       | 0.5   | 0.361  | 0.001 | 0.31   | 2.5        |
| 14925  | W         | Х        |         |            | Х        |         | W        |     |            | 3         | Т            |         |          |             |       | Т     | 0.182  | 0.001 | 0.11   | 1.0        |
| 14998  | W         |          |         |            |          |         |          |     |            |           | Т            | Т       | 0.5      | Т           |       | 0.5   | 0.169  | 0.007 | 0.14   | 0.5        |
| 15862  | W         | W        |         |            | W        |         |          |     |            |           | Т            | Т       | _        | 0.5         |       | 0.5   | 0.116  | 0.008 | 0.14   | 0.6        |
| 15870  | W         |          |         |            | M        |         | W        |     |            |           | 0.5          | T<br>T  | Т        | 0.5         |       | 1.0   | 0.157  | 0.002 | 0.09   | 0.8        |
| 15879  | W         | VV       |         |            | VV       | 14/     | W        | 14/ |            |           | 0.5          | ן<br>ד  |          | T           |       | 0.5   | 0.224  | 0.003 | 0.15   | 1.5        |
| 15007  | VV        | ٧V       |         |            | 14/      | vv      | 14/      | vv  |            |           | 1.0<br>T     | 1       |          | 0.5         |       | 1.5   | 0.285  | 0.008 | 0.28   | 1.8        |
| 15091  | VV<br>\\/ |          |         |            | vv       |         | vv       |     |            |           | 0.5          | 0.5     |          | 0.5         |       | 1.0   | 0.234  | 0.011 | 0.21   | 1.5        |
| 13300  | vv        |          |         |            |          |         |          |     |            |           | 0.5          | 0.5     |          | 0.5         |       | 1.5   | 0.421  | 0.032 | 0.30   | 2.4        |

| Project:  | Schaft Creek                                                                                                    |
|-----------|-----------------------------------------------------------------------------------------------------------------|
| Client:   | Copper Fox Metals Inc.                                                                                          |
| Data:     | Sample Information                                                                                              |
| Comments: | Sampled by MDAG on Feb 7'07.                                                                                    |
|           | For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps. |
|           |                                                                                                                 |
|           |                                                                                                                 |
|           |                                                                                                                 |

| Sample |            |         |             | Alteration | n Minerals |         |          |          | % Sulphides % |           |              |             |        | Assay Data  |       |       |       |       |       |         |
|--------|------------|---------|-------------|------------|------------|---------|----------|----------|---------------|-----------|--------------|-------------|--------|-------------|-------|-------|-------|-------|-------|---------|
| ld.    | Ch         | Ep      | Bt          | Se         | К          | Si      | Hm       | Cb       | Tm            | Mt        | Ср           | Bn          | Py     | Mb          | Other | Total | Cu    | Mo    | Au    | Ag      |
|        | Chlorite   | Epidote | Biotite     | Sericite   | K-spar     | Silicic | Hematite |          | Tourmaline    | Magnetite | Chalcopyrite | Bornite     | Pyrite | Molybdenite |       |       | (%)   | (%)   | (g/t) | (g/t)   |
| 15911  | W          |         |             |            | W          |         |          |          |               |           | 0.5          | 0.5         |        | 0.5         |       | 1.5   | 0.179 | 0.017 | 0.15  | 1.0     |
|        | Mineral Le | egend:  |             |            |            |         | Legend:  |          |               |           | Mineral Leg  | end:        |        |             |       |       |       |       |       | Legend: |
|        | Ch         | -       | Chlorite    |            |            |         | Т        | Trace    |               |           | Ch           | Chlorite    |        |             |       |       |       |       |       | Т       |
|        | Ep         |         | Epidote     |            |            |         | W        | weak     |               |           | Ep           | Epidote     |        |             |       |       |       |       |       | W       |
|        | Bt         |         | Biotite     |            |            |         | М        | moderate |               |           | Bt           | Biotite     |        |             |       |       |       |       |       | М       |
|        | Se         |         | Sericite    |            |            |         | S        | strong   |               |           | Se           | Sericite    |        |             |       |       |       |       |       | S       |
|        | к          |         | K-spar      |            |            |         |          |          |               |           | К            | K-spar      |        |             |       |       |       |       |       |         |
|        | Si         |         | Silicic     |            |            |         |          |          |               |           | Si           | Silicic     |        |             |       |       |       |       |       |         |
|        | Hm         |         | Hematite    |            |            |         |          |          |               |           | Hm           | Hematite    |        |             |       |       |       |       |       |         |
|        | Mt         |         | Magnetite   |            |            |         |          |          |               |           | Mt           | Magnetite   |        |             |       |       |       |       |       |         |
|        | Tm         |         | Tourmaline  |            |            |         |          |          |               |           | Tm           | Tourmaline  |        |             |       |       |       |       |       |         |
|        | Ср         |         | Chalcopyrit | е          |            |         |          |          |               |           | Ср           | Chalcopyrit | e      |             |       |       |       |       |       |         |
|        | Bn         |         | Bornite     |            |            |         |          |          |               |           | Bn           | Bornite     |        |             |       |       |       |       |       |         |
|        | Ру         |         | Pyrite      |            |            |         |          |          |               |           | Ру           | Pyrite      |        |             |       |       |       |       |       |         |
|        | Mb         |         | Molybdenite | e          |            |         |          |          |               |           | Mb           | Molybdenit  | е      |             |       |       |       |       |       |         |
|        | Oth        |         | See descrip | otion      |            |         |          |          |               |           | Oth          | See descrip | otion  |             |       |       |       |       |       |         |
|        | Х          |         | mineral pre | sent       |            |         |          |          |               |           | Х            | mineral pre | sent   |             |       |       |       |       |       |         |

Project: Schaft Creek

Client: Copper Fox Metals Inc.

Data: Sample Information

Comments: Sampled by MDAG on Feb 7'07.

For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Id.    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14018  | Quartz-feldspar porphyry of plag + k-spar + qtz + hbl. Hornblende is typically altered to chlorite. Light sericitic alteration of feldspars. Trace pyrite is disseminated and very-fine-grained. Locally some trace fine-grained epidote. Greater sulphide content is observed around fractures and fine quartz- carbonate veins, locally accounting for close to 1% by volume. These veins are randomly oriented, short (typically <2cm), and narrow (<3mm). Phenocrysts are medium- to coarse-grained. Compositionally the rock contains too much K-spar to be considered a quartz more granotic, but is rather more granodioritic in composition, however much of the k-spar could be secondary. Pyrite seems to occur preferentially with secondary chlorite replacement of hornblendeFrom 18.6 - 19.8 m: fairly wide vein (~1cm) hosting notable pyrite and possible chalcopyrite.                                                                                                                                                                                                                                                                                                |
| 14021  | Tourmaline Breccia. Unit is primarily porphyritic quartz-feldspar with primarily medium-grained plagioclase phenocrysts. "Wall-rock" is identical to the unit described above, and this unit is really the same lithology having undergone intense hydrothermal fracturing and veining. Where altered, the unit appears coarser-grained due to the "meshing" of finer groundmass grains by k-spar, which is then later overprinted by sericite and light chloritic alteration, particularly of secondary biotite from potassic phase. The name of this unit is derived from the presence of hydrothermal "vein" material which locally brecciates the rock. A more appropriate name would be "Hydrothermally brecciated porphyritic granodioritic "alteration, particularly of secondary biotite really more of a stockwork, as there is little evidence of clast movement. No heterolithic clasts, all in-situe, sharp, and angular to subangular clasts. The primary hydrothermal is easily identifiable by it's acicular habit in the hydrothermal "vein" material, and may account for the rest of the blue-grey material. Ratio of wall-rock to vein material is coally wall rock |
| 14036  | As above, same texture. 62.8 - 69.8 m: Degree of brecciation decreases. Similar texturally to interval at 53.9 - 58.5 m. Mostly highly potassically altered porphyritic wall rock overprinted by sericite, silica, and chlorite. Locally zones of intense, but spatially restricted tourmaline veining/brecciation/stockwork. Sulphide content decreases to 1-2%. Photo of typical texture (Photo 12) at 65.1 - 65.5 m showing association of very intense potassic alteration with tourmaline veining. Chalcopyrite is restricted almost exclusively to the hydrothermal veins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14043  | As TOBR unit above. Locally trace molybdenite paint on fracture surfaces and down to ~88.4 m, after which no molybdenite is observed. Very light epidote is observed starting at 76.8 m, and is observed to increase downhole. Locally chalcopyrite approaches 10%, but averages to roughly 2%. Due to the very locally varying intensity of, and nature of, the hydrothermal stockwork veining, this unit could possibly be better described as a stockwork - a term which could possibly be applied to the entire hole reflecting the variable degree of fracturing as a result of a violent fluid event. Photo 14 taken of box 39 showing typical stockwork texture (82.0 - 84.1 m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14060  | Felsic intrusive breccia. Matrix is felsic, fine-grained, and roughly equigranular with either clasts, or zones, of variable alteration of locally intense epidote and potassic (possibly hematite?) alteration. More mafic clasts have sharp boundaries and are angular to subangular, and tend to be more fine-grained. Upper one meter (down to 122.5m) is more massive, and less fractured (brecciated) than further downhole. Photo 24 was taken at 136.8 - 137.5 m as a texturally representative photo of the innerus breccia upit (sample 05-JES-228 was also collected from this interval)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14067  | Pyroxene phyric andesite (pyroxene phenocrysts). "Contact" with TOBR is not tau.<br>Pyroxene phenocrysts). "Contact" with TOBR is not such, but this lithology passes up into the TOBR unit up to 152.4 m. "Contact" is more a gradual decrease in the volume of hydrothermal vein material relative to the host<br>rock, with a corresponding decrease in sulphides. Sulphide % ~1-2%, primarily chalcopyrite with trace pyrite. Chlorite and sericite alteration (possibly overprinting weak potassic). Locally epidote, usually associated with tourmaline/quartz "Stringers"<br>or veins distal to the stockwork zone. Chloritic alteration is variable and centered around hairline veins. Photo 27 is typical of the textures within this unit (Sample 05-JES-230). Minor randomly oriented quartz veins without tourmaline are barren and                                                                                                                                                                                                                                                                                                                                       |
| 14076  | possibly were filling fractures. These minor veins are typically <2mm wide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14078  | Andesite. Fine grained similar to 15.8 m. Strondy fractured, moderately veined (e)idote-carb-quarts, Locally developed as breccia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14099  | Ditto above 71.0 m. [Quartz-feldspar porphyry. Fine grained, colour light green grey. Partly brecciated by 5-10% cm portions of pneumatolytic breccia, low angle CA. greenish colour probably caused by sericite alteration.] Quartz-feldspar porphyry. Variously and erratically permeated by 5-30% cm-dm stringers of pneumatolytic breccia, both as 'dykes' with strong flow fabric and as stockwork. In places 0.3- 1.0 m portions of andesite. Orientation of breccia fabric 0-30CA. Sulphides generally trac to 1% each pyrite. chalcopyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14103  | Tourmaline Breccia. Clasts of felsic intrusives, generally pink colour. Matrix made up of tourmaline, epidote, chlorite with accessory sulphides. Strong variation in matrix abundance from 1 to 30%. Lithology of clasts variable, including andesite, porphyritic andesite, felsic porphyry. Sulphide minerals are chalcopyrite and pyrite, with trace molybdenite. Abundance of sulphides varies strongly, from trace to 10%. Sulphides are generally disseminated in matrix, to a minor degree disseminated in clasts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14130  | Moderate- Strongly Altered Plagioclase-Phyric Andesite. Variable colour from pink to grey, with pink overprinting resulting from K -alteration of andesite. Most intense flanking cm-scale low angle quartz veins, and forming meter-scale alteration of envelopes, pervasive into host. Areas of high fracturing dominated by carbonate-chlorite filling. Randomly oriented, low-high angle mm-cm scale quartz veining, with erratic sulphide mineralization of chalcopyrite and bornite in trace to <1% over the section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14144  | Moderately-Strongly Altered Plagioclase-Phyric Andesite. Variably altered, similar to 6.4 - 36.6 m. Locally strong fault gouge and breccia developed. 57.9 - 61.0 m cm sections of fault gouge and broken core. 61.0 - 64.0 m medium to high angle fau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14148  | Fault Zone - Tectonic Deformation and Alteration. Zone. 70.0 - 73.0 m cm-dm sections of intense deformation and ateration, similar to above. Strong chloritization and silicification. Disseminated bornite associatd with chloritization and quartz vein material. Chloritization over-printing K-alteration. 73.1 - 76.2 m intense chloritization and fault gouge anastomizing at low angle to core. Chloritization over-printing K-alteration. Cm sections of highly comminuted rock developing rock flour and soft clay rich zones.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14156  | Fault Zone - Tectonic Deformation and Alteration Zone. 87.2 - 96.0 m relict protolith of possible feldspar porphyry displaying variable K-alteration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14162  | 107.3-109.3 m: Mafic Dyke. Dark grey, fine grain, with 10% 0.5-3mm carbonate amygdules. Upper and lower contact at Iow angle with strong carbonatization and bleaching along 20cm, especially the lower contact. Section contains mm low angle carbonate veinlets. Upper contact displays weak chill margin. 106.1-107.3 m: Feldspar-Quartz Porphyry. Variable K-alteration diffuse through section with meter lengths of intense alteration. 103.6 - 107.3 m Very low angle sub-parallel mm-cm quartz veins with 10% bornite along 10cm length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14169  | Feldspar-Quartz Porphyry. Predominantly pink. Variable K-alteration ranging from moderate to strong. MM stockwork and quartz veinlets concentrated in zones. Bornite and chalcopyrite mineralization associated with with stockwork with bornite being greater than chlcopyrite, with total sulphide concentrations of up to 7% along 30cm. Minor molybdenite. Sulphides are also finely disseminated in wall rock with stringer-type concentrations associated with quartz veins. Late molybdenite is smeared or painted along fracture planes trace chalcopyrite. Twically the fractures are at a low-medium angle and average 1 per meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14232  | Plagioclase-augite porphyry andesite pink-grey. Moderate potassic alteration. Core in part strongly fractured. Plagioclase phenocrysts light green, epidote alteration? Moderate stockwork of mm veins, medium-low angle, in part vuggy, mm to 2cm spacing. Quart veins, carbonate veins, carbonate veins, table?), charter veins and adjacent to veins and adjacent to veins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14250  | Augite porphyry. Similar to above. Fine grained, porphyritic. Colour generally dark green-grey with minor pink grey, weak potassic alteration: 85.3 - 101.2 m higher abundance of quartz-stockwork with chalcopyrite, bornite. Quartz-carbonate stockwork strongly variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14260  | Strongy variable, generally for abundante.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 200    | Augite porphyry. Similar to above. Fine grained, porphyritic. Colour generally dark green-grey with minor pink grey, weak potassic alteration: 85.3 - 101.2 m higher abundance of quartz-stockwork with chalcopyrite, bornite. Quartz-carbonate stockwork strongly variable, generally low abundance. 96.0 - 106.7 m Alternating weak chlorite alteration and weak potassic alteration. Weak quartz-carbonate stockwork, ~0.5% each chalcopyrite, bornite, pyrite, trace molybdenite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14276  | Plagioclase-phyric, porphyritic andesite. Fine grained, massive, generally competent. Fine grained groundmass with 10% 0.5-2mm plagioclase phenocrysts. Colour medium green-grey, locally beige. Alteration weak: Chlorite, epidote, hematite, loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

potassic. Veining, stockwork generally weak-moderate: mm-1cm quartz veins, carbonate veins, cm-10cm spacing, random orientation. Locally strong stockwork and vein breccia, ft size. Sulphides predominantly in stockwork, minor disseminated. Moly commonly on slickensides, in fractures. Sulphide abundance 0.5% for each chalcopyrite, bornite, trace molybdenite. Locally high chalcopyrite abundance in mm to 10mm veins, essentially massive chalcopyrite veins. 139.0 - 150.9 m dark green chlorite alteration. Low vein density. Rare 1mm massive chalcopyrite veins and molybdenite coated slickensides, fractures. Project: Schaft Creek

Client: Copper Fox Metals Inc.

Data: Sample Information

Comments: Sampled by MDAG on Feb 7'07.

For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample<br>Id.   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14295           | Plagioclase-phyric, porphyritic andesite. Fine grained, massive, generally competent. Fine grained groundmass with 10% 0.5-2mm plagioclase phenocrysts. Colour medium green-grey, locally beige. Alteration weak: Chlorite, epidote, hematite, loca potassic. Veining, stockwork generally weak-moderate: mm-1cm quartz veins, carbonate veins, cm-10cm spacing, random orientation. Locally strong stockwork and vein breccia, ft size. Sulphides predominantly in stockwork, minor disseminated. Moly commonly on slickensides, in fractures. Sulphide abundance 0.5% for each chalcopyrite, bornite, trace molybdenite. Locally high chalcopyrite abundance in mm to 10mm veins, essentially massive chalcopyrite veins. 199.0 - 212.7 m fine grained, dark green-grey, minor pink potassic alteration. Core competent. Weak stockwork of 1mm carbonate veins, quartz veins, in part with high abundance of sulphides (pyrite, chalcopyrite). Common 5-10mm pink potassic vein halos. Overall sulphides: 0.5-1% of each chalcopyrite, pyrite, in veins, halos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14301           | Altered Andesite - Moderate-Strong. Variable pink to grey. Variable dm-meter scale K-alteration ranging from moderate to strong, with dm-meter sections of weak incipient alteration. Light green alteration associated with mm carbonate veinlets appears to overprint the K-alteration, and may in part be epidote and serictic alteration. Areas of intense K-alteration completely obliterate protolith and are usually associated with stockwork arrray of mm-cm carbonate-quartz veins containing disseminated molybdenite and bornite. 10.8 - 12.8 m medium grey-green, fine grained with mm carbonate amygdules and mm low angle carbonate veinng. Possibly a late mafic dyke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14323           | Augite-Phyric Andesite. Medium grey, fine grain, with 3-5% 1-4mm anhedral augite phenocrysts displaying hematite rich rims and cores of chlorite-hematite. Some show distinct pseudomorphing of hexagonal crystal form. Overall this unit exhibits weak pervasive chloritization. Low to medium angle carbonate-chlorite fractures averaging 6/meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14332           | Augite Phyric Andesite. Medium grey, fine grain, with 3-5% 1-4mm anhedral augite phenocrysts displaying hematite rich rims and cores of chlorite-hematite. Some show distinct pseudomorphing of hexagonal crystal form. Overall this unit exhibits weak pervasive chloritization. Low to medium angle carbonate-chlorite fractures averaging 6/meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14345           | Weakly-Moderately Altered Plagioclase-Phyric Andesite. Pale pink-grey. Weak to moderate pervasive K-alteration. Where alteration is quite strong the feldspar phenocryst component of the rock become highly accentuated. 2-5mm, medium-high angle carbonate-quartz-molybdenite veins spaced at 2-3/meter. 125.0 - 142.8 m moderate to strong K-alteration overprinted by a network of mm-cm fluid phase, dominated by carbonate and mineralized with fine grain disseminated chalcopyrite carrying up to 7%, and forming a stockwork array with diffuse boundaries and does not appear to be vein associated. More of a late mineralization phase which may also be contributing to painted molybdenite on fracture planes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14348<br>14797  | Augite-Phyric Andesite. Fractured containing carbonate-chlorite filling and K-alteration envelopes on a mm-cm scale. Upper contact is fault controlled at high angle.<br>Variably Altered Augite-Feldspar-Phyric Andesite. Intensely broken core resulting in high rubble content. Variable K-alteration from moderate to strong associated with mm-cm quartz-carbonate stockwork veining dominated by bornite mineralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14808           | Moderate pervasive chloritization along meter lengths, accompanied by intense chlorite hairline chlorite veinlets forming a crackle breccia. Overall 5% magnetite.<br>Fault Zone. 41.3 - 49.0 m; very strong chloritization and carbonatization resulting in veining and crackle brecciation of an earlier intense K-alteration phase. Heavy gouge and rubble developed along meter lengths. Late chlorite veinlets throughout. Dm section of low angle shearing and brittle deformation resulting in mylonite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14816           | Variably Altered Augite -Phyric Andesite. Moderate to intense pervasive K-alteration and chloritization completely obliterating protolith. Ghosty spotty hematization forming cm patches resulting from the overprinting by K-alteration. Highly fractured w cm sections of fault gouge. Mm-cm medium to high angle guartz-carbonate -chlorite veins some heavily mineralized with bornite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14828           | Marginal Alteration-Transition Zone -Augite-Phyric Andesite. Variable K-alteration ranging from weak to moderate with patchy mm-cm ghosty relic host inclusions, and associated with pervasive chloritization imparting a green hue to the host rock.<br>96.9 - 104.8 m; mm randomly oriented quartz-carbonate veins forming a weak stockwork array.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14844<br>14680  | Andesite. Grey, fine grain, masive, Incipient crackle brecciation developed by hairline to 3mm randomly oriented carbonate veinlets. Rare 5mm quartz-carbonate veins with bornite. Rare molybdenite painted fractures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14871           | Augite-Feldspar-Phyric Andesite. Grey-green, massive with weak patchy K-alteration, rare mm epidote and darker blotchy areas of high magnetite. Mm randomly oriented quartz-carbonate veins with molybdenite and bornite, about 2/meter.<br>Andesitic Tuff-Lapilli Tuff. Medium grey, massive to interbeded tuff-lapilli tuff with dm sections of lithic tuff. Bedding at very low angle to core. Dominant mineralization is associated with mm quartz-carbonate veinlets carrying disseminated chalcopyrite<br>and bornite and occasional chalcopyrite stringers. All veining in a random array sometimes concentrated sufficiently to form a weak stockworks. Minor molybdenum painted fracture surfaces. Dm sections of intercalated feldspar-phyric andesite with<br>share bind andle contacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14887           | Andesitic Tuff. Massive fine grain rock displaying weak low angle bedding and intercalated lithic tuff horizons. Weak epidote forming cm patches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14689           | Feldspar-porphyry. Massive, competent. Pink colour, potassic alteration. Rock made up of very fine grained felsic groundmass and ~20% white feldspar phenocrysts and 1-2% yellowish, boxy, altered phenocrysts showing relict cleavage (pseudomorphatic augite ?). Rare quartz eyes. 1% finely disseminated sulphides, chalcopyrite, pyrite. Comment: Rock considered as an altered variety of PPAU. Low vein density, dm spacing, ranndom orientation: hairline to 3mm quartz-carbona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14695           | Veris, chlorite veris, pink carbonate-nematite veris. Accessory charcopyrite, molyboenite in veris.<br>Plagioclase-phyric and augite phyric andesite. Colour medium green grey. 1mm greenish plagioclase phenocrysts, 1-3% altered augite phenocrysts. Common (5%) black-dark breccia portions grading into crackle breccia. Matrix carbonate-chlorite-<br>red hematite. Moderate density hairline to 5mm veris with blackish halo (chlorite-carbonate), low angle to medium angle. Accessory chalcopyrite in veris and breccia. Sharp gradation. 28.3-29.9: Strongly altered, verined, rusty, in part rubble. Alterati-<br>hematite. chlorite 29.1-29.4 m 3cm guartz-carbonate veri 45CA and 3cm strongly molyben/tecarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate/field/anite-coarben/tecarbonate |
| 14742           | Lability andesite and andesite, variously textured and altered. Unit divided into subdivisions 155.7 - 164.3 m ANLP Colour medium grey. Weak chloritic and potassic alteration. Low vein density, medium angle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14666           | Volcanic Breccia. Variable grey-green colour, fine grain matrix. Varaible pervasive chloritization and weak carbonatization. Dm sections of cm size oxide inclusions. Randomly oriented hairline carbonate veinlets occasionally forming a weak stockwork array. Dm sections of weak K-alteration. Rare quartz-carbonate veinlet exhibiting biotite selvage. Locally disseminated and stringer chalcopyrite concentrations. Meter sections with mm-cm autobrecciated clasts as well as xenoliths ranging from fine grain mafic to intermediate in composition, with occasional porphyry clast. Alternating meter sections of interbedded andesite and voalcanic breccia. Rare molybdenite painted fractures. 51.8 - 57.9 m; high in irregular shaped oxide void fillings and bioteclastic sections with mm-cm autobrecciated clasts as well as the value of the termediate in composition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14685           | Diorite. Medium grey, massive. Variable chloritization, with sericite overprinting. Dm scale K-alteration associated with carbonate chlorite veins. 7% oxide and fine grain disseminated pyrite. Dm section of weak cumulate texture. 97.8 - 107.0 m; massive with a low vein density.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14685B<br>14545 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | Porphyritic, plagioclase-phyric andesite. Very fine grained, igneous, felsic groundmass hosting abundant 0.3-2mm plagioclase phenocrysts and some augite phenocrysts, both altered. Core competent, moderate to strongly fractured. Colour 1/2 - 3/4 dark green grey; 1/4 to 1/2 medium pink green grey, i.e. weak potassic alteration. Alteration generally weakly chloritic, 1/4 to 1/2 weak patchy, potassic alteration. Potassic alteration areas are spotty, with 20% dark green chloritic (with tourmaline?) spots. Accessory red hematite spots. Accessory disseminated pyrite, chalcopyrite, bornite. Rare epidote patches. Veining: Generally low vein density, quartz veins, carbonate veins, chlorite veins. Wins mm wide, low angle-medium angle, with mm wide pink halos. Sulphides: Trace to accessory pyrite. chalcopyrite, bornite in rare mm size patches, veins and disseminations. Rare 5-10mm size chalcopyrite patches or discontinuous veins.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

14565 Slightly brecciated, in situ, jig-saw fit. Colour 70% pink, potassic alteration. Weak breccia: Distention breccia, randomly oriented mm fractures filled with chlorite, carbonate. Breccia matrix 2-5%, containing chlorite. 1/10 hematite alteration. Accessory chalcopyrite as a) disseminations, mm patches; b) in thin veins.

Plagioclase porphyry. Massive, medium grained. Colour light pink grey, greenish grey. 40-60% 0.5-3mm size plagioclase phenocrysts, 5% interstitial chlorite grains, fine grained felsic matrix. Upper contact sharp, irregular, chilled, with andesite wall rock clasts in plagioclase porphyry. Chilled phase has 1% altered augite phenocrysts and rare quartz eyes. Common accessory (1%) chalcopyrite as disseminations and in veins. Trace molybdenite in veins. Two 5cm fault gouges 45CA at 85.0m and 85.3 m. Lower contact irregular: PPPL and ANPF are intertwined, fine grained andesite being broken up and intruded by medium grained plagioclase porphyry.

Project: Schaft Creek

Copper Fox Metals Inc. Sample Information Client:

Data:

Comments: Sampled by MDAG on Feb 7'07.

For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample<br>Id. | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14578         | Plagioclase-augite-phyric andesite; medium grained-coarse grained plagioclase- and augite phenocrysts; colour pale pink grey, i.e potassic alteration. Variable abundance of phenocrysts. Moderate vein density, variable, in places cm spacing, crackle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14578B        | breccia of dark veins, low angle, carbonate-chlorite-veins. 102.1 - 102.4 m Several 1mm high-molybdenite slickensides; at 108.5 m one 4cm quartz vein with 2% molybdenite. Overall accessory chalcopyrite, bornite, molybdenite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14598         | Fine grained, plaglociase-phyric, augite-phyric andesite. Colour mostly medium green grey, rare (<1/10) pink potassic alteration, mostly as halos around veins. Moderate vein density, cm-10cm spacing, hairline to 5mm quartz veins, low angle to medium angle. Several 1-5cm carbonate-chlorite-veins and vein breccia with high sulphide abundance (several % of coarse grained chalcopyrite, pyrite, molybdenite)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14893         | Plagioclase-phyric and augite-phyric andesite. Fine grained, massive, competent core. Fine grained, felsic, igneous grondmass hosting 20% 0.2-2mm plagioclase phenocrysts; and 1-5% dark, altered augite phenocrysts. Variable phenocryst abundance. Colour generally medium-dark green grey and medium brown grey, alternating at 1.5 - 3.0 m intervals. Weak chlorititic and weak potassic alteration. Generally low vein density, 10cm spacing, random orientation, <1 to 10mm width. Rare 10-30mm veins. Scattered portions (0.3 - 1.5 m) of higher vein density/stockwork, cm spacing. Trace to ccessory sulphides in veins: chalcopyrite, bornite. Approximate subdivisions according to geological characteristics: 4.9 - 23.8 m PPAU Dark green grey with minor medium brown grey portions. Strondy fractured. rusty. limonitic, in part with malachite coating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 14899         | Plagioclase-phyric and augite-phyric andesite. Fine grained, massive, competent core. Fine grained, felsic, igneous grondmass hosting 20% 0.2-2mm plagioclase phenocrysts; and 1-5% dark, altered augite phenocrysts. Variable phenocryst abundance. Colour generally medium-dark green grey and medium brown grey, alternating at 1.5 - 3.0 m intervals. Weak chlorititic and weak potassic alteration. Generally low vein density, 10cm spacing, random orientation, <1 to 10mm width. Rare 10-30mm veins. Scattered portions (0.3 - 1.5 m) of higher vein density/stockwork, cm spacing. Trace to ccessory sulphides in veins: chalcopyrite, bornite. Approximate subdivisions according to geological characteristics: 23.8 - 40.5 m PPAU and ANDS, fine grained, low phenocrysts population.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14908         | Lapilli andesite/agglomerate-andesite. Core competent, massive. Distinct fragmental texture, heterolithic clasts, andesitic. Clasts size < 1 to > 5 cm. Colour generally medium brown grey, minor dark green grey. Weak chlorite and potassic alteration Generally low vein density, but slightly higher than above: cm to dm spacing, medium angle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 14917         | Plagioclase porphyry. Core competent, rock massive. Colour pale pink grey. Potassic alteration. 30-60% 1-3mm white and pink feldspar phenocrysts in fine grained felsic matrix. Contacts: Both upper and lower contact show ghost breccia over 0.6m. lower contact shows well preserved, sharp, chilled contact (50-60CA) of adjacent volcanic. This suggests that PPPL is probably older, i.e. pre-dated the andesite. Low vein density, dm spacing, 1-10mm quartz veins, with trace/accessory bornite, chalcopyrite. Quartz veins in part yuqoy. open. Sharp contact 60CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14925         | Ditto above, to 74.4 m. Lapilli-andesite/agglomerate. Core competent, massive texture. Size of adesitic clasts mm to 5cm. Clasts shape angular and rounded. Both matrix and clasts andesitic. Colour medium green grey and brown grey. Low vein density, dm spacing, medium angle. Weak chloritic, potassic, hematite alteration. Rare cm wide, pink potassic selvages. Rare 0.3-1.0m size stockworks. 132.3 - 135.3m strongly fractured, core rubbly. Trace sulphides in veins, hairline to 1mm, chalcopyrite, bornite, molybdenite; and chalcopyrite fracture coating. Molybdenite commoly as fracture coating. Chalcopyrite forming 0.5-2mm veins with high chalcopyrite abundance, one per 1.5 - 3m. dm size portions with stockwork and higher sulphides abundanc: 84.7-85.0m; 87.8-88.4m; 91.1-91.4m; 99.4-100.0m; 100.6-101.8m; 110.9-112.8m; 114.3-114.9m; 117.3-118.0m; 120.7-121.9m; 127.7-128.3m; 134.1-137.1m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 14998         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15862         | 1/2cm quartz-carbonate-chlorite veins forming dm sections of stockworks, variably mineralized with chalcopyrite, bornite and molybdenite. Occasional molybdenite fracture surfaces. Late mm unmineralized arbonate veins.<br>Feldspar-Phyric Andesite. Green-grey, 10-15% mm anhedral-euhedral feldspar phenocrysts. 5% oxide inclusions. Variable mm sections of K-alteration accordance alteration associated with quartz-carbonate-chlorite and carbonate-chlorite and carb    |
| 15870         | Andesitic Lapilli Tuff-Agglomerate. Grey-green, lapilli fragments in fine grain andesitic matrix. Variable pervasive carbonatization from weak to strong, bleaching an earlier pervasive chloritization. High stockwork vein density of mm-cm quartz-chlorite-<br>carbonate veins and chlorite-carbonate veins forming dm sections of crackle breccia. Rare mm pyrite stringers and strands. Chalcopyrite, bornite and molybdenite associated with the quartz-chlorite veins. Late cross-cutting unmineralized carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 15879         | veins. Rare cm sections of nightly comminuted rock forming bands at medium to high angle. Vuggy veins associated with carbonate phase. Cm sections of K-alteration, vein related.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15887         | Andesite Breccia-Agglomerate. Angular mm-cm mafic-intermediate fragments amd mm oxide inclusions, auto-brecciated. Fine grain matrix. Moderate pervasive chloritization. Lower contact fault controlled with 3cm of gouge at high angle to core.<br>Andesitic Tuffite. Pale olive green. Fine grain. Interbedded clastic and pryoclastic facies. Riddled with a high density stockwork array of mm carbonate-chlorite veinletes mineralized with fine grain bornite, and displaying mm-1/2cm silica alteration<br>selvage manifest as gravy tones outwarring an active alteration protocol and the protocol in the protocol and |
| 15891         | Feldspar-Phyric Andesite. Green-grey. Variable chloritization overprinted by intermittent privative anetation termittent privative and the       |
| 15908         | Feldspar-Quartz Porphyry. Andedral to subhedral feldspar phenocrysts and anhedral quartz compacted into a massive rock with disseminated chalcopyrite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 13911         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Sample          | Paste      |           |              |              | Carbonate Leach | HCI Leachable |              |                       |                           |            |                           |                           |                           |
|-----------------|------------|-----------|--------------|--------------|-----------------|---------------|--------------|-----------------------|---------------------------|------------|---------------------------|---------------------------|---------------------------|
| ld.             | pН         | S (Total) | S (Sulphide) | S (Sulphide) | S (Sulphate)    | S (Sulphate)  | S (Sulphate) | S(BaSO <sub>4</sub> ) | S(del <sub>actual</sub> ) | S(del)     | TAP                       | SAP                       | PAP                       |
|                 | Unity      | (% Leco)  | (% Leco)     | (% Calc)     | (%)             | (%)           | (% HCI/Carb) | (%)                   | (%)                       | (%)        | (kg CaCO <sub>3</sub> /t) | (kg CaCO <sub>3</sub> /t) | (kg CaCO <sub>3</sub> /t) |
| Method          | OA-ELE07   | S-IR08    | S-IR07       | S-CAL06      | S-GRA06         | S-GRA06a      |              | Calculated            | Calculated                | Calculated | Calculated                | Calculated                | Calculated                |
| MDL             | 0.1        | 0.01      | 0.01         | 0.01         | 0.01            | 0.01          |              |                       |                           |            |                           |                           |                           |
| 14018           | 7.6        | 0.8       | 0.69         | 0.795        | 0.02            | 0.005         | 0.005        | 0.027                 | 0.078                     | 0.078      | 25.0                      | 24.0                      | 19.7                      |
| 14021           | 7.9        | 0.62      | 0.6          | 0.615        | 0.03            | 0.005         | 0.005        | 0.010                 | 0.005                     | 0.005      | 19.4                      | 18.9                      | 12.5                      |
| 14036           | 7.9        | 1 47      | 1.39         | 1 465        | 0.02            | 0.005         | 0.005        | 0.013                 | 0.062                     | 0.062      | 45.9                      | 45.4                      | 37.8                      |
| 14043           | 8.2        | 0.26      | 0.22         | 0.255        | 0.02            | 0.005         | 0.005        | 0.006                 | 0.029                     | 0.029      | 8.1                       | 7.8                       | 2.8                       |
| 14060           | 8          | 1.31      | 0.62         | 0.6          | 0.74            | 0.71          | 0.71         | 0.008                 | -0.028                    | 0.000      | 40.9                      | 19.4                      | 10.6                      |
| 14067           | 8.4        | 0.4       | 0.41         | 0.395        | 0.01            | 0.005         | 0.005        | 0.008                 | -0.023                    | 0.000      | 12.5                      | 12.8                      | 4.7                       |
| 14076           | 8.2        | 0.77      | 0.76         | 0.765        | 0.01            | 0.005         | 0.005        | 0.010                 | -0.005                    | 0.000      | 24.1                      | 23.8                      | 19.1                      |
| 14083           | 8.2        | 1.46      | 1.35         | 1.455        | 0.03            | 0.005         | 0.005        | 0.017                 | 0.088                     | 0.088      | 45.6                      | 44.9                      | 40.4                      |
| 14099           | 8.1        | 0.34      | 0.28         | 0.335        | 0.03            | 0.005         | 0.005        | 0.021                 | 0.034                     | 0.034      | 10.6                      | 9.8                       | 5.6                       |
| 14103           | 8          | 0.69      | 0.25         | 0.27         | 0.45            | 0.42          | 0.42         | 0.006                 | 0.014                     | 0.014      | 21.6                      | 8.2                       | 0.2                       |
| 14130           | 8.3        | 0.29      | 0.29         | 0.285        | 0.03            | 0.005         | 0.005        | 0.013                 | -0.018                    | 0.000      | 9.1                       | 9.1                       | 0.2                       |
| 14144           | 8          | 0.26      | 0.2          | 0.255        | 0.02            | 0.005         | 0.005        | 0.008                 | 0.047                     | 0.047      | 8.1                       | 7.7                       | 0.2                       |
| 14148           | 7.6        | 0.14      | 0.04         | 0.135        | 0.02            | 0.005         | 0.005        | 0.015                 | 0.080                     | 0.080      | 4.4                       | 3.8                       | 0.2                       |
| 14156           | 7.7        | 0.17      | 0.14         | 0.165        | 0.04            | 0.005         | 0.005        | 0.006                 | 0.019                     | 0.019      | 5.3                       | 5.0                       | 0.2                       |
| 14162           | 7.9        | 0.13      | 0.12         | 0.125        | 0.02            | 0.005         | 0.005        | 0.013                 | -0.008                    | 0.000      | 4.1                       | 3.8                       | 0.2                       |
| 14169           | 8.1        | 0.3       | 0.29         | 0.295        | 0.01            | 0.005         | 0.005        | 0.002                 | 0.003                     | 0.003      | 9.4                       | 9.2                       | 0.2                       |
| 14232           | 8.3        | 0.15      | 0.14         | 0.145        | 0.005           | 0.005         | 0.005        | 0.004                 | 0.001                     | 0.001      | 4.7                       | 4.4                       | 0.2                       |
| 14250           | 8.3        | 0.19      | 0.19         | 0.185        | 0.01            | 0.005         | 0.005        | 0.004                 | -0.009                    | 0.000      | 5.9                       | 5.9                       | 0.2                       |
| 14260           | 8.4        | 0.34      | 0.34         | 0.335        | 0.01            | 0.005         | 0.005        | 0.004                 | -0.009                    | 0.000      | 10.6                      | 10.6                      | 0.2                       |
| 14276           | 8.5        | 0.17      | 0.14         | 0.165        | 0.01            | 0.005         | 0.005        | 0.025                 | 0.000                     | 0.000      | 5.3                       | 4.4                       | 0.2                       |
| 14295           | 8.6        | 0.44      | 0.41         | 0.435        | 0.005           | 0.005         | 0.005        | 0.002                 | 0.023                     | 0.023      | 13.8                      | 13.5                      | 6.1                       |
| 14301           | 8.6        | 0.34      | 0.32         | 0.335        | 0.01            | 0.005         | 0.005        | 0.006                 | 0.009                     | 0.009      | 10.6                      | 10.3                      | 2.1                       |
| 14323           | 8.6        | 0.15      | 0.13         | 0.145        | 0.005           | 0.005         | 0.005        | 0.006                 | 0.009                     | 0.009      | 4.7                       | 4.3                       | 0.2                       |
| 14332           | 8.6        | 0.26      | 0.26         | 0.255        | 0.01            | 0.005         | 0.005        | 0.004                 | -0.009                    | 0.000      | 8.1                       | 8.1                       | 0.2                       |
| 14345           | 8.4        | 0.52      | 0.52         | 0.515        | 0.005           | 0.005         | 0.005        | 0.004                 | -0.009                    | 0.000      | 16.3                      | 16.3                      | 0.2                       |
| 14348           | 8.3        | 0.44      | 0.45         | 0.435        | 0.01            | 0.005         | 0.005        | 0.004                 | -0.019                    | 0.000      | 13.8                      | 14.1                      | 0.2                       |
| 14797           | 8.1        | 0.08      | 0.05         | 0.075        | 0.005           | 0.005         | 0.005        | 0.004                 | 0.021                     | 0.021      | 2.5                       | 2.2                       | 0.2                       |
| 14808           | 7.8        | 0.18      | 0.16         | 0.175        | 0.005           | 0.005         | 0.005        | 0.004                 | 0.011                     | 0.011      | 5.6                       | 5.3                       | 0.2                       |
| 14816           | 7.6        | 0.46      | 0.46         | 0.45         | 0.005           | 0.01          | 0.01         | 0.004                 | -0.014                    | 0.000      | 14.4                      | 14.4                      | 1.7                       |
| 14828           | 7.6        | 0.13      | 0.1          | 0.125        | 0.02            | 0.005         | 0.005        | 0.017                 | 0.008                     | 0.008      | 4.1                       | 3.4                       | 0.2                       |
| 14844           | 7.7        | 0.21      | 0.2          | 0.2          | 0.005           | 0.01          | 0.01         | 0.008                 | -0.008                    | 0.000      | 6.6                       | 6.3                       | 0.2                       |
| 14680           | 7.7        | 0.22      | 0.2          | 0.215        | 0.01            | 0.005         | 0.005        | 0.006                 | 0.009                     | 0.009      | 6.9                       | 6.5                       | 0.2                       |
| 14871           | 7.6        | 0.37      | 0.32         | 0.365        | 0.02            | 0.005         | 0.005        | 0.002                 | 0.043                     | 0.043      | 11.6                      | 11.3                      | 0.2                       |
| 14887           | 7.8        | 0.44      | 0.42         | 0.41         | 0.01            | 0.03          | 0.03         | 0.008                 | -0.018                    | 0.000      | 13.8                      | 13.1                      | 6.8                       |
| 14689           | 8.2        | 0.68      | 0.69         | 0.675        | 0.01            | 0.005         | 0.005        | 0.002                 | -0.017                    | 0.000      | 21.3                      | 21.6                      | 15.0                      |
| 14095           | 8.2        | 0.14      | 0.13         | 0.135        | 0.005           | 0.005         | 0.005        | 0.004                 | 0.001                     | 0.001      | 4.4                       | 4.1                       | 0.2                       |
| 14742           | 0.2        | 0.19      | 0.19         | 0.100        | 0.005           | 0.005         | 0.005        | 0.004                 | -0.009                    | 0.000      | 5.9                       | 5.9                       | 0.2                       |
| 14685           | 0.1<br>8.1 | 1 70      | 1.8          | 1 785        | 0.01            | 0.005         | 0.005        | 0.008                 | -0.003                    | 0.000      | 55.0                      | 56.3                      | 3.0<br>42.3               |
| 14000<br>14685B | 7.0        | 1.79      | 1.0          | 1.705        | 0.01            | 0.005         | 0.005        | 0.010                 | -0.025                    | 0.000      | 55.9<br>60.0              | 50.5<br>60.5              | 42.5                      |
| 14545           | 7.5        | 0.10      | 0.13         | 0.185        | 0.01            | 0.005         | 0.005        | 0.000                 | 0.137                     | 0.137      | 5.9                       | 5.1                       | 40.0                      |
| 14565           | 7.8        | 0.13      | 0.13         | 0.225        | 0.005           | 0.005         | 0.005        | 0.021                 | -0.019                    | 0.004      | 7.2                       | 7.5                       | 0.2                       |
| 14571           | 7.8        | 1 04      | 1.03         | 1.035        | 0.02            | 0.005         | 0.005        | 0.001                 | -0.005                    | 0.000      | 32.5                      | 32.2                      | 14.7                      |
| 14578           | 7.9        | 1.82      | 1.82         | 1 815        | 0.02            | 0.005         | 0.005        | 0.015                 | -0.020                    | 0.000      | 56.9                      | 56.9                      | 47.4                      |
| 14578B          | 7.9        | 1.93      | 1.91         | 1 925        | 0.03            | 0.005         | 0.005        | 0.019                 | -0.004                    | 0.000      | 60.3                      | 59.7                      | 49.2                      |
| 14598           | 8.1        | 0.13      | 0.13         | 0.125        | 0.01            | 0.005         | 0.005        | 0.004                 | -0.009                    | 0.000      | 4.1                       | 4.1                       | 1.7                       |
| 14893           | 8          | 0.11      | 0.08         | 0.07         | 0.005           | 0.04          | 0.04         | 0.010                 | -0.020                    | 0.000      | 3.4                       | 2.5                       | 0.2                       |
| 14899           | 8.1        | 0.02      | 0.02         | 0.015        | 0.005           | 0.005         | 0.005        | 0.008                 | -0.013                    | 0.000      | 0.6                       | 0.6                       | 0.2                       |
| 14908           | 8.1        | 0.08      | 0.07         | 0.075        | 0.005           | 0.005         | 0.005        | 0.017                 | -0.012                    | 0.000      | 2.5                       | 2.2                       | 0.2                       |
| 14917           | 8.2        | 0.19      | 0.16         | 0.185        | 0.005           | 0.005         | 0.005        | 0.019                 | 0.006                     | 0.006      | 5.9                       | 5.2                       | 0.2                       |
| 14925           | 7.9        | 0.14      | 0.12         | 0.135        | 0.005           | 0.005         | 0.005        | 0.008                 | 0.007                     | 0.007      | 4.4                       | 4.0                       | 0.2                       |
| 14998           | 7.8        | 0.13      | 0.12         | 0.125        | 0.005           | 0.005         | 0.005        | 0.006                 | -0.001                    | 0.000      | 4.1                       | 3.8                       | 0.2                       |
| 15862           | 7.9        | 0.08      | 0.03         | 0.075        | 0.005           | 0.005         | 0.005        | 0.006                 | 0.039                     | 0.039      | 2.5                       | 2.1                       | 0.2                       |
| 15870           | 8          | 0.13      | 0.09         | 0.125        | 0.02            | 0.005         | 0.005        | 0.025                 | 0.010                     | 0.010      | 4.1                       | 3.1                       | 0.2                       |
| 15879           | 8          | 0.12      | 0.09         | 0.115        | 0.02            | 0.005         | 0.005        | 0.019                 | 0.006                     | 0.006      | 3.8                       | 3.0                       | 0.2                       |
| 15887           | 8          | 0.31      | 0.29         | 0.305        | 0.01            | 0.005         | 0.005        | 0.010                 | 0.005                     | 0.005      | 9.7                       | 9.2                       | 0.2                       |

| Sample                                      | Paste                    |                            |                            |                             | Carbonate Leach        | HCI Leachable           |              |                       |                           |                   |                                         |                                         |                                         |
|---------------------------------------------|--------------------------|----------------------------|----------------------------|-----------------------------|------------------------|-------------------------|--------------|-----------------------|---------------------------|-------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| ld.                                         | pН                       | S (Total)                  | S (Sulphide)               | S (Sulphide)                | S (Sulphate)           | S (Sulphate)            | S (Sulphate) | S(BaSO <sub>4</sub> ) | S(del <sub>actual</sub> ) | S(del)            | TAP                                     | SAP                                     | PAP                                     |
| Method<br>MDL                               | Unity<br>OA-ELE07<br>0.1 | (% Leco)<br>S-IR08<br>0.01 | (% Leco)<br>S-IR07<br>0.01 | (% Calc)<br>S-CAL06<br>0.01 | (%)<br>S-GRA06<br>0.01 | (%)<br>S-GRA06a<br>0.01 | (% HCI/Carb) | (%)<br>Calculated     | (%)<br>Calculated         | (%)<br>Calculated | (kg CaCO <sub>3</sub> /t)<br>Calculated | (kg CaCO <sub>3</sub> /t)<br>Calculated | (kg CaCO <sub>3</sub> /t)<br>Calculated |
|                                             |                          |                            |                            |                             |                        |                         |              |                       |                           |                   |                                         |                                         |                                         |
| 15891                                       | 7.8                      | 0.14                       | 0.09                       | 0.135                       | 0.02                   | 0.005                   | 0.005        | 0.031                 | 0.014                     | 0.014             | 4.4                                     | 3.2                                     | 0.2                                     |
| 15908                                       | 7.8                      | 0.22                       | 0.2                        | 0.215                       | 0.02                   | 0.005                   | 0.005        | 0.006                 | 0.009                     | 0.009             | 6.9                                     | 6.5                                     | 0.2                                     |
| 15911                                       | 7.9                      | 0.09                       | 0.07                       | 0.085                       | 0.01                   | 0.005                   | 0.005        | 0.010                 | 0.005                     | 0.005             | 2.8                                     | 2.3                                     | 0.2                                     |
| Maximum                                     | 8.6                      | 1.95                       | 1.91                       | 1.94                        | 0.74                   | 0.71                    | 0.71         | 0.031                 | 0.14                      | 0.14              | 60.9                                    | 60.5                                    | 49.2                                    |
| Minimum                                     | 7.6                      | 0.02                       | 0.02                       | 0.015                       | 0.005                  | 0.005                   | 0.005        | 0.0021                | -0.028                    | 0                 | 0.62                                    | 0.62                                    | 0.16                                    |
| Mean                                        | 8.04                     | 0.45                       | 0.41                       | 0.43                        | 0.033                  | 0.025                   | 0.025        | 0.01                  | 0.0089                    | 0.015             | 14.1                                    | 13.2                                    | 6.75                                    |
| Standard Deviation                          | 0.27                     | 0.5                        | 0.48                       | 0.49                        | 0.11                   | 0.11                    | 0.11         | 0.0068                | 0.031                     | 0.027             | 15.7                                    | 15.3                                    | 13.5                                    |
| 10 Percentile                               | 7.7                      | 0.12                       | 0.078                      | 0.11                        | 0.005                  | 0.005                   | 0.005        | 0.0042                | -0.019                    | 0                 | 3.69                                    | 2.9                                     | 0.16                                    |
| 25 Percentile                               | 7.8                      | 0.14                       | 0.13                       | 0.14                        | 0.005                  | 0.005                   | 0.005        | 0.0042                | -0.0092                   | 0                 | 4.38                                    | 4.08                                    | 0.16                                    |
| Median                                      | 8                        | 0.26                       | 0.22                       | 0.26                        | 0.01                   | 0.005                   | 0.005        | 0.0084                | 0.0029                    | 0.0029            | 8.12                                    | 7.71                                    | 0.16                                    |
| 75 Percentile                               | 8.2                      | 0.45                       | 0.44                       | 0.44                        | 0.02                   | 0.005                   | 0.005        | 0.013                 | 0.014                     | 0.014             | 14.1                                    | 13.8                                    | 5.33                                    |
| 90 Percentile                               | 8.4                      | 1.34                       | 1.09                       | 1.12                        | 0.03                   | 0.006                   | 0.006        | 0.019                 | 0.044                     | 0.044             | 41.9                                    | 34.7                                    | 23.4                                    |
| Interquartile Range (IQR) <sup>1</sup>      | 0.4                      | 0.31                       | 0.3                        | 0.3                         | 0.015                  | 0                       | 0            | 0.0084                | 0.023                     | 0.014             | 9.69                                    | 9.72                                    | 5.18                                    |
| Variance                                    | 0.074                    | 0.25                       | 0.23                       | 0.24                        | 0.012                  | 0.011                   | 0.011        | 0.000047              | 0.00095                   | 0.00071           | 246                                     | 234                                     | 182                                     |
| Skewness                                    | 0.37                     | 1.93                       | 2.08                       | 2.11                        | 5.72                   | 5.79                    | 5.79         | 1.24                  | 1.97                      | 2.67              | 1.93                                    | 2.09                                    | 2.25                                    |
| Coefficient of Variation (CoV) <sup>2</sup> | 0.034                    | 1.11                       | 1.18                       | 1.15                        | 3.34                   | 4.2                     | 4.2          | 0.68                  | 3.47                      | 1.83              | 1.11                                    | 1.16                                    | 2                                       |
| Count                                       | 59                       | 59                         | 59                         | 59                          | 59                     | 59                      | 59           | 59                    | 59                        | 59                | 59                                      | 59                                      | 59                                      |

Total

NPR < 1.0 or NPR = 1.0 1.0 < NPR < 2.0 NPR > 2.0 or NPR =2.0

% NPR < 1.0 or NPR = 1.0 of Total % 1.0 < NPR < 2.0 of Total % NPR > 2.0 or NPR =2.0 of Total

 $^1$  Interquartile Range (IQR) = 75<sup>th</sup> percentile minus 25<sup>th</sup> percentile  $^2$  Coefficient of Variation (CoV) = standard deviation divided by mean

NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.

% S (Sulphide) (calc) = % S (Total) - % S (Sulphate) Carbonate Leach
%S(BaSO<sub>4</sub>) = Ba (ppm) \* 0.0001 \* 32.06 / 137.37
% S (del <sub>actual</sub>) = %S(Total) - %S(Sulphide) Leco - %S(Sulphate) Carbonate Leach - %S(BaSO<sub>4</sub>)
% S (del) = % S (del <sub>actual</sub>) unless < 0, then 0</li>
TAP = % S (Total) \* 31.25
SAP = % S (Sulphide + del) \* 31.25
PAP = % Pyrite(Calculated) \* 31.25
Note: If Calculated Pyrite is < 0.005 then calculated pyrite assumed to be 0.005</li>
Unavailable NP (UNP) = 10
Available NP = NP - Unavailable NP

| Sample |                           | Available                 | Total    | Inorganic | Inorganic       | Excess     | Total                     | Inorganic                 | (Ca)                      | (Ca+Mg)                   |                           | Adjusted                  |                           | Adjusted                  |                           | Adjusted                  |
|--------|---------------------------|---------------------------|----------|-----------|-----------------|------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| ld.    | NP                        | NP                        | С        | č         | CO <sub>2</sub> | С          | CaNP                      | CaNP                      | CaNP                      | CaNP                      | TNNP                      | TNNP                      | SNNP                      | SNNP                      | PNNP                      | PNNP                      |
|        | (kg CaCO <sub>3</sub> /t) | (kg CaCO <sub>3</sub> /t) | (% Leco) | (%)       | (%)             | (%)        | (kg CaCO <sub>3</sub> /t) |
| Method | OA-VOL08                  | Calculated                | C-IR07   | C-GAS05   | C-GAS05         | Calculated | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                |
| MDL    | 1                         |                           | 0.01     | 0.05      | 0.2             |            |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |
| 14019  | 40                        | 22                        | 0.4      | 0.20      | 4.4             | 0.02       | 22.2                      | 24.0                      | 44 E                      | 00 E                      | 17.0                      | 7.0                       | 10.0                      |                           | 22.2                      | 10.0                      |
| 14010  | 42                        | 54                        | 0.4      | 0.30      | 1.4             | 0.02       | 33.3<br>63.3              | 50.1                      | 44.0<br>65.4              | 00.0<br>103.3             | 17.0                      | 7.0                       | 10.0                      | 0.U<br>35.1               | 22.3<br>51.5              | 12.5                      |
| 14021  | 40                        | 30                        | 0.70     | 0.72      | 2.0             | 0.04       | 43.3                      | 40.0                      | 45.0                      | 83.4                      | 44.0                      | -6.0                      | 40.1                      | -6.4                      | 11.0                      | 41.5                      |
| 14043  | 40                        | 30                        | 0.32     | 0.40      | 0.8             | 0.04       | 27.5                      | 18.2                      | 35.0                      | 113.2                     | 31.0                      | 21.9                      | 32.2                      | 22.2                      | 37.2                      | 27.2                      |
| 14060  | 41                        | 31                        | 0.00     | 0.21      | 1               | 0.12       | 24.2                      | 22.7                      | 78.4                      | 164.9                     | 0.1                       | -9.9                      | 21.6                      | 11.6                      | 30.4                      | 20.4                      |
| 14067  | 49                        | 39                        | 0.41     | 0.35      | 1.3             | 0.06       | 34.2                      | 29.6                      | 64.7                      | 175.0                     | 36.5                      | 26.5                      | 36.2                      | 26.2                      | 44.3                      | 34.3                      |
| 14076  | 66                        | 56                        | 0.71     | 0.7       | 2.6             | 0.01       | 59.2                      | 59.1                      | 108.4                     | 211.3                     | 41.9                      | 31.9                      | 42.3                      | 32.3                      | 46.9                      | 36.9                      |
| 14083  | 74                        | 64                        | 0.85     | 0.83      | 3               | 0.02       | 70.8                      | 68.2                      | 100.6                     | 173.5                     | 28.4                      | 18.4                      | 29.1                      | 19.1                      | 33.6                      | 23.6                      |
| 14099  | 78                        | 68                        | 0.92     | 0.92      | 3.4             | 0          | 76.7                      | 77.3                      | 73.7                      | 107.4                     | 67.4                      | 57.4                      | 68.2                      | 58.2                      | 72.4                      | 62.4                      |
| 14103  | 85                        | 75                        | 0.9      | 0.87      | 3.2             | 0.03       | 75.0                      | 72.8                      | 73.2                      | 126.3                     | 63.4                      | 53.4                      | 76.8                      | 66.8                      | 84.8                      | 74.8                      |
| 14130  | 91                        | 81                        | 1.18     | 1.19      | 4.4             | 0          | 98.3                      | 100.1                     | 65.4                      | 107.4                     | 81.9                      | 71.9                      | 81.9                      | 71.9                      | 90.8                      | 80.8                      |
| 14144  | 116                       | 106                       | 1.43     | 1.37      | 5               | 0.06       | 119.2                     | 113.7                     | 93.6                      | 141.4                     | 107.9                     | 97.9                      | 108.3                     | 98.3                      | 115.8                     | 105.8                     |
| 14148  | 170                       | 160                       | 1.92     | 1.9       | 7               | 0.02       | 160.0                     | 159.2                     | 115.6                     | 193.4                     | 165.6                     | 155.6                     | 166.2                     | 156.2                     | 169.8                     | 159.8                     |
| 14156  | 73                        | 63                        | 0.88     | 0.86      | 3.2             | 0.02       | 73.3                      | 72.8                      | 61.7                      | 94.2                      | 67.7                      | 57.7                      | 68.0                      | 58.0                      | 72.8                      | 62.8                      |
| 14162  | 219                       | 209                       | 2.3      | 2.28      | 8.4             | 0.02       | 191.7                     | 191.0                     | 139.6                     | 247.5                     | 214.9                     | 204.9                     | 215.3                     | 205.3                     | 218.8                     | 208.8                     |
| 14169  | 64                        | 54                        | 0.7      | 0.69      | 2.5             | 0.01       | 58.3                      | 56.9                      | 57.9                      | 74.4                      | 54.6                      | 44.6                      | 54.8                      | 44.8                      | 63.8                      | 53.8                      |
| 14232  | 89                        | 79                        | 0.93     | 0.87      | 3.2             | 0.06       | 77.5                      | 72.8                      | 66.4                      | 103.9                     | 84.3                      | 74.3                      | 84.6                      | 74.6                      | 88.8                      | 78.8                      |
| 14250  | 118                       | 108                       | 1.14     | 1.12      | 4.1             | 0.02       | 95.0                      | 93.2                      | 101.6                     | 179.0                     | 112.1                     | 102.1                     | 112.1                     | 102.1                     | 117.8                     | 107.8                     |
| 14260  | 100                       | 90                        | 1.03     | 1.02      | 3.7             | 0.01       | 85.8                      | 84.1                      | 75.9                      | 133.1                     | 89.4                      | 79.4                      | 89.4                      | 79.4                      | 99.8                      | 89.8                      |
| 14276  | 47                        | 37                        | 0.43     | 0.25      | 0.9             | 0.18       | 35.8                      | 20.5                      | 107.6                     | 175.2                     | 41.7                      | 31.7                      | 42.6                      | 32.6                      | 46.8                      | 36.8                      |
| 14295  | 111                       | 101                       | 1.05     | 0.95      | 3.5             | 0.1        | 87.5                      | 79.6                      | 97.6                      | 161.5                     | 97.3                      | 87.3                      | 97.5                      | 87.5                      | 104.9                     | 94.9                      |
| 14301  | 136                       | 126                       | 1.56     | 1.54      | 5.7             | 0.02       | 130.0                     | 129.6                     | 91.4                      | 142.5                     | 125.4                     | 115.4                     | 125.7                     | 115.7                     | 133.9                     | 123.9                     |
| 14323  | 73                        | 03                        | 0.88     | 0.84      | 3.1             | 0.04       | 73.3                      | 70.5                      | 93.0                      | 133.2                     | 68.3<br>96.0              | 58.3                      | 00.7                      | 58.7                      | 72.8                      | 02.8                      |
| 14332  | 95                        | 60                        | 0.04     | 0.74      | 2.7             | 0.1        | 70.0                      | 01.4                      | 04.7<br>62.7              | 127.5                     | 60.9                      | 70.9                      | 60.9                      | 70.9                      | 94.0                      | 04.0<br>69.9              |
| 14345  | 59                        | 40                        | 0.73     | 0.44      | 1.0             | 0.29       | 50.8                      | 50.4                      | 53.7                      | 100.1                     | 45.3                      | 35.3                      | 02.0                      | 34.0                      | 70.0<br>58.8              | 48.8                      |
| 14797  | 125                       | 115                       | 1 43     | 1 30      | 5.1             | 0.01       | 119.2                     | 116.0                     | 94.4                      | 157.0                     | 122.5                     | 112.5                     | 122.8                     | 112.8                     | 124.8                     | 114.8                     |
| 14808  | 172                       | 162                       | 2.23     | 2 21      | 8.1             | 0.04       | 185.8                     | 184.2                     | 121.6                     | 188.7                     | 166.4                     | 156.4                     | 166.7                     | 156.7                     | 171.8                     | 161.8                     |
| 14816  | 133                       | 123                       | 1.59     | 0.27      | 1               | 1.32       | 132.5                     | 22.7                      | 83.2                      | 153.2                     | 118.6                     | 108.6                     | 118.6                     | 108.6                     | 131.3                     | 121.3                     |
| 14828  | 143                       | 133                       | 1.7      | 1.69      | 6.2             | 0.01       | 141.7                     | 141.0                     | 108.4                     | 183.3                     | 138.9                     | 128.9                     | 139.6                     | 129.6                     | 142.8                     | 132.8                     |
| 14844  | 75                        | 65                        | 0.51     | 0.47      | 1.7             | 0.04       | 42.5                      | 38.7                      | 70.4                      | 226.5                     | 68.4                      | 58.4                      | 68.8                      | 58.8                      | 74.8                      | 64.8                      |
| 14680  | 102                       | 92                        | 1.06     | 1.05      | 3.8             | 0.01       | 88.3                      | 86.4                      | 103.4                     | 171.3                     | 95.1                      | 85.1                      | 95.5                      | 85.5                      | 101.8                     | 91.8                      |
| 14871  | 88                        | 78                        | 0.76     | 0.73      | 2.7             | 0.03       | 63.3                      | 61.4                      | 84.9                      | 164.0                     | 76.4                      | 66.4                      | 76.7                      | 66.7                      | 87.8                      | 77.8                      |
| 14887  | 119                       | 109                       | 1.2      | 1.18      | 4.3             | 0.02       | 100.0                     | 97.8                      | 129.4                     | 231.1                     | 105.3                     | 95.3                      | 105.9                     | 95.9                      | 112.2                     | 102.2                     |
| 14689  | 53                        | 43                        | 0.64     | 0.66      | 2.4             | 0          | 53.3                      | 54.6                      | 54.4                      | 77.5                      | 31.8                      | 21.8                      | 31.4                      | 21.4                      | 38.0                      | 28.0                      |
| 14695  | 114                       | 104                       | 1.35     | 1.3       | 4.8             | 0.05       | 112.5                     | 109.2                     | 99.4                      | 161.6                     | 109.6                     | 99.6                      | 109.9                     | 99.9                      | 113.8                     | 103.8                     |
| 14742  | 84                        | 74                        | 0.78     | 0.8       | 2.9             | 0          | 65.0                      | 66.0                      | 69.4                      | 161.6                     | 78.1                      | 68.1                      | 78.1                      | 68.1                      | 83.8                      | 73.8                      |
| 14666  | 94                        | 84                        | 0.77     | 0.74      | 2.7             | 0.03       | 64.2                      | 61.4                      | 98.1                      | 188.7                     | 84.0                      | 74.0                      | 84.3                      | 74.3                      | 89.0                      | 79.0                      |
| 14685  | 112                       | 102                       | 0.95     | 0.91      | 3.3             | 0.04       | 79.2                      | 75.1                      | 82.7                      | 195.1                     | 56.1                      | 46.1                      | 55.8                      | 45.8                      | 69.7                      | 59.7                      |
| 14685B | 102                       | 92                        | 0.85     | 0.84      | 3.1             | 0.01       | 70.8                      | 70.5                      | 73.7                      | 190.6                     | 41.1                      | 31.1                      | 41.5                      | 31.5                      | 56.1                      | 46.1                      |
| 14545  | 77                        | 67                        | 0.63     | 0.59      | 2.2             | 0.04       | 52.5                      | 50.0                      | 95.4                      | 153.0                     | 71.1                      | 61.1                      | 71.9                      | 61.9                      | 75.8                      | 65.8                      |
| 14565  | 136                       | 126                       | 1.33     | 1.28      | 4.7             | 0.05       | 110.8                     | 106.9                     | 114.4                     | 164.2                     | 128.8                     | 118.8                     | 128.5                     | 118.5                     | 135.8                     | 125.8                     |
| 14571  | 76                        | 66                        | 0.76     | 0.75      | 2.8             | 0.01       | 63.3                      | 63.7                      | 64.7                      | 112.9                     | 43.5                      | 33.5                      | 43.8                      | 33.8                      | 61.3                      | 51.3                      |
| 14578  | 111                       | 101                       | 1.25     | 1.20      | 4.6             | 0          | 104.2                     | 104.6                     | 104.9                     | 153.5                     | 54.1                      | 44.1                      | 54.1                      | 44.1                      | 63.6                      | 53.6                      |
| 14578B | 122                       | 112                       | 1.38     | 1.35      | 5               | 0.03       | 115.0                     | 113.7                     | 107.9                     | 160.2                     | 01.7<br>72.0              | 51.7                      | 62.3                      | 52.3                      | 72.8                      | 62.8                      |
| 14590  | 111                       | 101                       | 0.59     | 0.57      | 2.1             | 0.02       | 49.2                      | 47.0                      | 03.7                      | 215.0                     | 107.6                     | 02.9                      | 109.5                     | 02.9                      | 110.0                     | 100.9                     |
| 14695  | 81                        | 71                        | 0.68     | 0.65      | 3.0             | 0.03       | 56 7                      | 54.6                      | 88.4                      | 215.9                     | 80.4                      | 97.0<br>70.4              | 80.4                      | 90.5<br>70.4              | 80.8                      | 70.8                      |
| 14908  | 75                        | 65                        | 0.00     | 0.00      | 2.4             | 0.00       | 46.7                      | 47.8                      | 94.6                      | 193.5                     | 72.5                      | 62.5                      | 72.8                      | 62.8                      | 74.8                      | 64.8                      |
| 14917  | 66                        | 56                        | 0.55     | 0.50      | 2               | 0.01       | 45.8                      | 45.5                      | 57.9                      | 133.3                     | 60.1                      | 50.1                      | 60.8                      | 50.8                      | 65.8                      | 55.8                      |
| 14925  | 82                        | 72                        | 0.72     | 0.73      | 2.7             | 0          | 60.0                      | 61.4                      | 89.9                      | 173.9                     | 77.6                      | 67.6                      | 78.0                      | 68.0                      | 81.8                      | 71.8                      |
| 14998  | 103                       | 93                        | 1.05     | 1.04      | 3.8             | 0.01       | 87.5                      | 86.4                      | 99.4                      | 166.5                     | 98.9                      | 88.9                      | 99.3                      | 89.3                      | 102.8                     | 92.8                      |
| 15862  | 130                       | 120                       | 1.34     | 1.34      | 4.9             | 0          | 111.7                     | 111.4                     | 105.4                     | 177.0                     | 127.5                     | 117.5                     | 127.9                     | 117.9                     | 129.8                     | 119.8                     |
| 15870  | 151                       | 141                       | 1.72     | 1.72      | 6.3             | 0          | 143.3                     | 143.3                     | 115.9                     | 188.7                     | 146.9                     | 136.9                     | 147.9                     | 137.9                     | 150.8                     | 140.8                     |
| 15879  | 118                       | 108                       | 1.33     | 1.31      | 4.8             | 0.02       | 110.8                     | 109.2                     | 120.6                     | 198.0                     | 114.3                     | 104.3                     | 115.0                     | 105.0                     | 117.8                     | 107.8                     |
| 15887  | 95                        | 85                        | 0.94     | 0.91      | 3.3             | 0.03       | 78.3                      | 75.1                      | 102.9                     | 168.4                     | 85.3                      | 75.3                      | 85.8                      | 75.8                      | 94.8                      | 84.8                      |

| Sample                                      |                           | Available                 | Total    | Inorganic | Inorganic       | Excess     | Total                     | Inorganic                 | (Ca)                      | (Ca+Mg)                   |                           | Adjusted                  |                           | Adjusted                  |                           | Adjusted                  |
|---------------------------------------------|---------------------------|---------------------------|----------|-----------|-----------------|------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| ld.                                         | NP                        | NP                        | С        | С         | CO <sub>2</sub> | С          | CaNP                      | CaNP                      | CaNP                      | CaNP                      | TNNP                      | TNNP                      | SNNP                      | SNNP                      | PNNP                      | PNNP                      |
|                                             | (kg CaCO <sub>3</sub> /t) | (kg CaCO <sub>3</sub> /t) | (% Leco) | (%)       | (%)             | (%)        | (kg CaCO <sub>3</sub> /t) |
| Method                                      | OA-VOL08                  | Calculated                | C-IR07   | C-GAS05   | C-GAS05         | Calculated | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                | Calculated                |
| MDL                                         | 1                         |                           | 0.01     | 0.05      | 0.2             |            |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |
| 15891                                       | 128                       | 118                       | 1.44     | 1.4       | 5.1             | 0.04       | 120.0                     | 116.0                     | 128.1                     | 199.3                     | 123.6                     | 113.6                     | 124.8                     | 114.8                     | 127.8                     | 117.8                     |
| 15908                                       | 121                       | 111                       | 1.2      | 1.2       | 4.4             | 0          | 100.0                     | 100.1                     | 112.9                     | 189.0                     | 114.1                     | 104.1                     | 114.5                     | 104.5                     | 120.8                     | 110.8                     |
| 15911                                       | 92                        | 82                        | 0.85     | 0.82      | 3               | 0.03       | 70.8                      | 68.2                      | 87.9                      | 183.0                     | 89.2                      | 79.2                      | 89.7                      | 79.7                      | 91.8                      | 81.8                      |
| Maximum                                     | 219                       | 209                       | 2.3      | 2.28      | 8.4             | 1.32       | 192                       | 191                       | 140                       | 258                       | 215                       | 205                       | 215                       | 205                       | 219                       | 209                       |
| Minimum                                     | 40                        | 30                        | 0.29     | 0.21      | 0.8             | 0          | 24.2                      | 18.2                      | 35                        | 74.4                      | 0.062                     | -9.94                     | 3.61                      | -6.39                     | 11.2                      | 1.16                      |
| Mean                                        | 96.5                      | 86.5                      | 1        | 0.94      | 3.46            | 0.055      | 83.2                      | 78.8                      | 88.3                      | 159                       | 82.4                      | 72.4                      | 83.3                      | 73.3                      | 89.8                      | 79.8                      |
| Standard Deviation                          | 35.2                      | 35.2                      | 0.44     | 0.46      | 1.67            | 0.17       | 36.9                      | 38.1                      | 23.1                      | 42.2                      | 41.1                      | 41.1                      | 40.4                      | 40.4                      | 39.3                      | 39.3                      |
| 10 Percentile                               | 52.2                      | 42.2                      | 0.52     | 0.43      | 1.56            | 0          | 43.2                      | 35.5                      | 57.9                      | 103                       | 35.6                      | 25.6                      | 35.4                      | 25.4                      | 43                        | 33                        |
| 25 Percentile                               | 74.5                      | 64.5                      | 0.7      | 0.66      | 2.4             | 0.01       | 58.8                      | 54.6                      | 69.9                      | 130                       | 55.3                      | 45.3                      | 55.3                      | 45.3                      | 64.8                      | 54.8                      |
| Median                                      | 92                        | 82                        | 0.9      | 0.86      | 3.2             | 0.02       | 75                        | 72.8                      | 91.4                      | 164                       | 78.1                      | 68.1                      | 78.1                      | 68.1                      | 84.8                      | 74.8                      |
| 75 Percentile                               | 118                       | 108                       | 1.29     | 1.23      | 4.5             | 0.04       | 108                       | 102                       | 104                       | 189                       | 109                       | 98.8                      | 109                       | 99.2                      | 115                       | 105                       |
| 90 Percentile                               | 136                       | 126                       | 1.57     | 1.43      | 5.22            | 0.068      | 131                       | 119                       | 116                       | 202                       | 128                       | 118                       | 128                       | 118                       | 134                       | 124                       |
| Interguartile Range (IQR) <sup>1</sup>      | 43.5                      | 43.5                      | 0.59     | 0.57      | 2.1             | 0.03       | 48.8                      | 47.8                      | 34.5                      | 58.4                      | 53.4                      | 53.4                      | 53.9                      | 53.9                      | 50                        | 50                        |
| Variance                                    | 1237                      | 1237                      | 0.2      | 0.21      | 2.8             | 0.03       | 1363                      | 1450                      | 535                       | 1781                      | 1686                      | 1686                      | 1630                      | 1630                      | 1544                      | 1544                      |
| Skewness                                    | 0.84                      | 0.84                      | 0.9      | 0.85      | 0.86            | 6.9        | 0.9                       | 0.86                      | -0.14                     | -0.079                    | 0.57                      | 0.57                      | 0.66                      | 0.66                      | 0.64                      | 0.64                      |
| Coefficient of Variation (CoV) <sup>2</sup> | 0.36                      | 0.41                      | 0.44     | 0.48      | 0.48            | 3.16       | 0.44                      | 0.48                      | 0.26                      | 0.27                      | 0.5                       | 0.57                      | 0.48                      | 0.55                      | 0.44                      | 0.49                      |
| Count                                       | 59                        | 59                        | 59       | 59        | 59              | 59         | 59                        | 59                        | 59                        | 59                        | 59                        | 59                        | 59                        | 59                        | 59                        | 59                        |

Total

NPR < 1.0 or NPR = 1.0 1.0 < NPR < 2.0 NPR > 2.0 or NPR =2.0

% NPR < 1.0 or NPR = 1.0 of Total % 1.0 < NPR < 2.0 of Total % NPR > 2.0 or NPR =2.0 of Total

<sup>1</sup> Interquartile Range (IQR) = 75<sup>th</sup> percentile minus 25<sup>th</sup> percentile
 <sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean
 NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.</li>

Total CaNP = % C \* 10 \* 100.09 / 12.01 Inorganic CaNP = %  $CQ_2$  \* 10 \* 100.09 / 44.01 (Ca) CaNP = (Ca(ppm) \* 100.09 / 40.08) / 1000 (Ca+Mg) CaNP = ((Ca(ppm) \* 100.09 / 40.08) + (Mg(ppm) \* 100.09 / 24.31)) / 1000 TNNP = NP - TAP Adjusted TNNP = Available NP - TAP SNNP = NP - SAP Adjusted SNNP = Available NP - SAP PNNP = NP - PAP Adjusted PNNP = Available NP - PAP 
 Project:
 Schaft Creek

 Client:
 Copper Fox Metals Inc.

 Data:
 ABA Data

 Comments:
 Sampled by MDAG on Feb 7'07.

|                 |            |               |              |              |             |               |          | Comparison |
|-----------------|------------|---------------|--------------|--------------|-------------|---------------|----------|------------|
| Sampla          |            | A allocate al |              | A diverse d  |             | 0 alivesta al | Cizz     | of Fizz    |
| Id              |            |               | SNPR         | SNPR         | PNPR        | PNPR          | Rating   | & NP       |
| ю.              |            |               |              |              |             |               | Unity    | a ni       |
| Method          | Calculated | Calculated    | Calculated   | Calculated   | Calculated  | Calculated    | OA-VOL08 |            |
| MDL             |            |               |              |              |             |               |          |            |
| 14019           | 1 69       | 1 20          | 1 75         | 1 22         | 2.12        | 1.62          | 2        | Disagrag   |
| 14018           | 1.00       | 2 79          | 1.70         | 2.86         | 2.13        | 1.02          | 2        | Agree      |
| 14036           | 1.07       | 0.849         | 1.08         | 0.859        | 1.29        | 1.02          | 2        | Disagree   |
| 14043           | 4.92       | 3.69          | 5.15         | 3.86         | 14.2        | 10.7          | 2        | Disagree   |
| 14060           | 1          | 0.757         | 2.12         | 1.6          | 3.86        | 2.92          | 2        | Disagree   |
| 14067           | 3.92       | 3.12          | 3.82         | 3.04         | 10.4        | 8.29          | 2        | Disagree   |
| 14076           | 2.74       | 2.33          | 2.78         | 2.36         | 3.45        | 2.93          | 2        | Agree      |
| 14083           | 1.02       | 1.4           | 7.05         | 1.42         | 1.83        | 1.58          | 2        | Agree      |
| 14099           | 3.94       | 3.48          | 10.3         | 9.1          | 200         | 200           | 2        | Disagree   |
| 14130           | 10         | 8.94          | 10.0         | 8.94         | 200         | 200           | 3        | Disagree   |
| 14144           | 14.3       | 13            | 15.1         | 13.8         | 200         | 200           | 3        | Agree      |
| 14148           | 38.9       | 36.6          | 45.2         | 42.5         | 200         | 200           | 3        | Agree      |
| 14156           | 13.7       | 11.9          | 14.7         | 12.7         | 200         | 200           | 3        | Disagree   |
| 14162           | 53.9       | 51.4          | 58.4         | 55.7         | 200         | 200           | 3        | Agree      |
| 14169           | 6.83       | 5.76          | 6.99         | 5.9          | 200         | 200           | 3        | Disagree   |
| 14232           | 19         | 10.9          | 20.2         | 18           | 200         | 200           | 3        | Disagree   |
| 14250           | 9 41       | 8 47          | 9 41         | 8 47         | 200         | 200           | 3        | Agree      |
| 14276           | 8.85       | 6.96          | 10.7         | 8.46         | 200         | 200           | 2        | Disagree   |
| 14295           | 8.07       | 7.35          | 8.2          | 7.47         | 18.2        | 16.6          | 3        | Agree      |
| 14301           | 12.8       | 11.9          | 13.2         | 12.3         | 66.1        | 61.3          | 3        | Agree      |
| 14323           | 15.6       | 13.4          | 16.8         | 14.5         | 200         | 200           | 2        | Agree      |
| 14332           | 11.7       | 10.5          | 11.7         | 10.5         | 200         | 200           | 3        | Disagree   |
| 14345           | 4.86       | 4.25          | 4.86         | 4.25         | 200         | 200           | 3        | Disagree   |
| 14348           | 4.29       | 3.50          | 4.2          | 3.48<br>52   | 200         | 200           | 2        | Agree      |
| 14808           | 30.6       | 28.8          | 32.2         | 30.3         | 200         | 200           | 3        | Agree      |
| 14816           | 9.25       | 8.56          | 9.25         | 8.56         | 80.4        | 74.4          | 3        | Agree      |
| 14828           | 35.2       | 32.7          | 42.3         | 39.3         | 200         | 200           | 3        | Agree      |
| 14844           | 11.4       | 9.9           | 12           | 10.4         | 200         | 200           | 3        | Disagree   |
| 14680           | 14.8       | 13.4          | 15.6         | 14.1         | 200         | 200           | 3        | Agree      |
| 14871           | 7.61       | 6.75          | 7.76         | 6.88         | 200         | 200           | 3        | Disagree   |
| 14887           | 8.65       | 7.93          | 9.07         | 8.3          | 17.6        | 16.1          | 3        | Agree      |
| 14009           | 2.49       | 2.02          | 2.40         | 1.99         | 3.54<br>200 | 2.07          | 2        | Agree      |
| 14033           | 14 1       | 12.5          | 14.1         | 12.5         | 200         | 200           | 3        | Disagree   |
| 14666           | 9.4        | 8.4           | 9.7          | 8.67         | 18.7        | 16.7          | 3        | Disagree   |
| 14685           | 2          | 1.82          | 1.99         | 1.81         | 2.65        | 2.41          | 3        | Agree      |
| 14685B          | 1.67       | 1.51          | 1.69         | 1.52         | 2.22        | 2.01          | 3        | Agree      |
| 14545           | 13         | 11.3          | 15           | 13.1         | 62.5        | 54.3          | 3        | Disagree   |
| 14565           | 18.9       | 17.5          | 18.1         | 16.8         | 200         | 200           | 3        | Agree      |
| 14571           | 2.34       | 2.03          | 2.36         | 2.05         | 5.16        | 4.49          | 3        | Disagree   |
| 14576<br>14578B | 1.95       | 1.70          | 2.04         | 1.70         | 2.34        | 2.13          | 3        | Agree      |
| 14598           | 19         | 16.5          | 19           | 16.5         | 46.5        | 40.5          | 3        | Disagree   |
| 14893           | 32.3       | 29.4          | 44.4         | 40.4         | 200         | 200           | 3        | Aaree      |
| 14899           | 130        | 114           | 130          | 114          | 200         | 200           | 3        | Disagree   |
| 14908           | 30         | 26            | 34.3         | 29.7         | 200         | 200           | 3        | Disagree   |
| 14917           | 11.1       | 9.43          | 12.7         | 10.8         | 200         | 200           | 3        | Disagree   |
| 14925           | 18.7       | 16.5          | 20.7         | 18.2         | 200         | 200           | 3        | Disagree   |
| 14998           | 25.4       | 22.9          | 27.5         | 24.8         | 200         | 200           | 3        | Agree      |
| 15870           | 52<br>37.2 | 40<br>34 7    | 00.0<br>48.4 | 20.9<br>45.2 | 200         | 200           | ა<br>ვ   | Agree      |
| 15879           | 31.5       | 28.8          | 39.3         | 35.9         | 200         | 200           | 3        | Agree      |
| 15887           | 9.81       | 8.77          | 10.3         | 9.23         | 200         | 200           | 3        | Disagree   |

### Project: Schaft Creek Client: Copper Fox Metals Inc. ABA Data Data: Comments: Sampled by MDAG on Feb 7'07.

| 0                                           |            |            |            |            |            |            | -        | Comparison<br>of Fizz |
|---------------------------------------------|------------|------------|------------|------------|------------|------------|----------|-----------------------|
| Sample                                      |            | Adjusted   |            | Adjusted   |            | Adjusted   | Fizz     | Rating                |
| ld.                                         | TNPR       | TNPR       | SNPR       | SNPR       | PNPR       | PNPR       | Rating   | & NP                  |
| Method                                      | Calculated | Calculated | Calculated | Calculated | Calculated | Calculated | OA-VOL08 |                       |
| MDL                                         |            |            |            |            |            |            |          |                       |
| 15891                                       | 29.3       | 27         | 39.5       | 36.4       | 200        | 200        | 3        | Agree                 |
| 15908                                       | 17.6       | 16.1       | 18.6       | 17         | 200        | 200        | 3        | Agree                 |
| 15911                                       | 32.7       | 29.2       | 39.5       | 35.2       | 200        | 200        | 3        | Disagree              |
| Maximum                                     | 130        | 114        | 130        | 114        | 200        | 200        |          |                       |
| Minimum                                     | 1          | 0.76       | 1.08       | 0.86       | 1.29       | 1.03       |          |                       |
| Mean                                        | 17.3       | 15.6       | 19.3       | 17.4       | 132        | 131        |          |                       |
| Standard Deviation                          | 20.1       | 18.1       | 21.7       | 19.6       | 90.2       | 90.9       |          |                       |
| 10 Percentile                               | 1.99       | 1.81       | 2.03       | 1.8        | 2.62       | 2.38       |          |                       |
| 25 Percentile                               | 4.58       | 3.62       | 5.01       | 4.06       | 15.9       | 14         |          |                       |
| Median                                      | 11.4       | 9.9        | 12         | 10.5       | 200        | 200        |          |                       |
| 75 Percentile                               | 22.6       | 20.5       | 24.1       | 21.5       | 200        | 200        |          |                       |
| 90 Percentile                               | 35.6       | 33.1       | 44.6       | 40.8       | 200        | 200        |          |                       |
| Interquartile Range (IQR) <sup>1</sup>      | 18.1       | 16.9       | 19.1       | 17.4       | 184        | 186        |          |                       |
| Variance                                    | 405        | 328        | 470        | 385        | 8128       | 8265       |          |                       |
| Skewness                                    | 3.36       | 3.14       | 2.72       | 2.53       | -0.61      | -0.6       |          |                       |
| Coefficient of Variation (CoV) <sup>2</sup> | 1.16       | 1.16       | 1.13       | 1.13       | 0.68       | 0.69       |          |                       |
| Count                                       | 59         | 59         | 59         | 59         | 59         | 59         |          |                       |
| Total                                       |            |            |            |            |            |            |          |                       |
| NPR < 1.0 or NPR = 1.0                      | 1          | 2          | 0          | 1          | 0          | 0          |          |                       |
| 1.0 < NPR < 2.0                             | 5          | 6          | 6          | 8          | 2          | 3          |          |                       |
| NPR > 2.0 or NPR =2.0                       | 53         | 51         | 53         | 50         | 57         | 56         |          |                       |
| % NPR < 1.0 or NPR = 1.0 of Total           | 1.694915   | 3.389831   | 0          | 1.694915   | 0          | 0          |          |                       |

% 1.0 < NPR < 2.0 of Total 8.474576 10.16949 10.16949 13.55932 3.389831 5.084746 % NPR > 2.0 or NPR =2.0 of Total 89.83051 86.44068 89.83051 84.74576 96.61017 94.91525

> <sup>1</sup> Interquartile Range (IQR) =  $75^{th}$  percentile minus  $25^{th}$  percentile <sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean

NOTE: If data was reported as < detection limit half the detection limit is shown in italics and w

## TNPR = NP / TAP Note: If % S(Total) < 0.01 then TNPR = 200 Note: If % S(Total) > 0.01 and NP < = 0 then TNPR = 0.001Adjusted TNPR = UNP / TAP Note: If % S(Total) < 0.01 then Adjusted TNPR = 200 Note: If % S(Total) > 0.01 and UNP < = 0 then Adjusted TNPR = 0.001 SNPR = NP / SAP Note: If % S(Sulphide + del) < 0.01 then SNPR = 200 'Note: If % S(Sulphide + del) > 0.01 and NP < = 0 then SNPR = 0.001 Adjusted SNPR = UNP / SAP Note: If % S(Sulphide + del) < 0.01 then Adjusted SNPR = 200 Note: If % S(Sulphide + del) > 0.01 and UNP < = 0 then Adjusted SNPR = 0.001 PNPR = NP / PAP Note: If % Pyrite(Calc) < 0.01 then PNPR = 200 Note: If % Pyrite(Calc) > 0.01 and NP < = 0 then PNPR = 0.001 Adjusted PNPR = UNP / TAP Note: If % Pyrite(Calc) < 0.005 then Adjusted PNPR = 200 Note: If % Pyrite(Calc) > 0.005 and UNP < = 0 then Adjusted PNPR = 0.001

## Schaft Creek

Copper Fox Metals Inc. ICP Metals Data

Sampled by MDAG on Feb 7'07.

Rare earth elements may not be totally soluble in MS61 method.

ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

| Sample                  | Silver  | Aluminum | Arsenic    | Barium     | Beryllium | Bismuth | Calcium | Cadmium | Cerium  | Cobalt  | Chromium  | Cesium  | Copper  | Iron    | Gallium      | Germanium |
|-------------------------|---------|----------|------------|------------|-----------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|--------------|-----------|
| ld.                     | Ag      | AI       | As         | Ba         | Be        | Bi      | Ca      | Cd      | Ce      | Co      | Cr        | Cs      | Cu      | Fe      | Ga           | Ge        |
|                         | (mag)   | (mag)    | (mag)      | (mag)      | (mag)     | (mag)   | (mag)   | (mag)   | (mag)   | (mag)   | (mag)     | (mag)   | (mag)   | (mag)   | (mag)        | (mag)     |
| Method                  | ME-MS61 | ME-MS61  | ME-MS61    | ME-MS61    | ME-MS61   | ME-MS61 | ME-MS61 | ME-MS61 | ME-MS61 | ME-MS61 | ME-MS61   | ME-MS61 | ME-MS61 | ME-MS61 | ME-MS61      | ME-MS61   |
| MDL                     | 0.01    | 100      | 0.2        | 10         | 0.05      | 0.01    | 100     | 0.02    | 0.01    | 0.1     | 1         | 0.05    | 0.2     | 100     | 0.05         | 0.05      |
| Crustal Abundance: From | 0.037   | 4200     | 1          | 0.4        | 1         | 0.007   | 5100    | 0.035   | 11.5    | 0.1     | 2         | 0.4     | 4       | 3800    | 4            | 0.2       |
| Crustal Abundance: To   | 0.11    | 88000    | 13         | 2300       | 3         | 0.01    | 312400  | 0.42    | 345     | 74      | 170       | 6       | 250     | 86500   | 30           | 8         |
|                         |         |          |            |            |           |         |         |         |         |         |           |         |         |         |              |           |
| 14018                   | 0.88    | 80300    | 15.5       | 1120       | 13        | 0.93    | 17800   | 0.02    | 26.5    | 12      | 24        | 5 1 1   | 1290    | 25800   | 17.8         | 0.09      |
| 14021                   | 1.22    | 77000    | 24.5       | 460        | 1.03      | 0.86    | 26200   | 0.11    | 23.2    | 97      | 21        | 5.86    | 1740    | 18100   | 16.4         | 0.08      |
| 14036                   | 1.43    | 74100    | 30.2       | 500        | 1         | 1.01    | 18400   | 0.01    | 23.8    | 16.6    | 20        | 8 17    | 1920    | 25600   | 16.2         | 0.18      |
| 14043                   | 0.7     | 75600    | 10.9       | 230        | 1.03      | 0.4     | 14000   | 0.01    | 13.3    | 14.6    | 31        | 2 39    | 1330    | 28500   | 16.05        | 0.10      |
| 14060                   | 0.7     | 79600    | 14.3       | 380        | 0.00      | 0.4     | 31400   | 0.01    | 23.7    | 15.4    | 26        | 4.87    | 2610    | 35900   | 16.05        | 0.00      |
| 14000                   | 1.07    | 95100    | 14.5       | 270        | 0.55      | 0.24    | 25000   | 0.07    | 23.7    | 10.4    | 20        | 4.07    | 2010    | 42000   | 17.6         | 0.03      |
| 14007                   | 1.00    | 00000    | 17.5       | 410        | 0.95      | 0.18    | 23900   | 0.03    | 21.0    | 19.9    | 30        | 5.75    | 2400    | 42900   | 19.05        | 0.12      |
| 14070                   | 1.32    | 90000    | 10.1       | 410        | 0.8       | 0.02    | 43400   | 0.01    | 22.0    | 23.3    | 33        | 5.75    | 1300    | 54000   | 10.05        | 0.12      |
| 14003                   | 0.96    | 00000    | 13.9       | 700        | 0.76      | 0.00    | 40300   | 0.5     | 22.0    | 24      | 49        | 7.97    | 1360    | 57600   | 17.0         | 0.12      |
| 14099                   | 1.36    | 72400    | 2.2        | 770        | 0.95      | 1.51    | 29500   | 1.16    | 21.3    | 6.4     | 16        | 9.67    | 1210    | 22300   | 15.1         | 0.07      |
| 14103                   | 1.06    | 76000    | 5.6        | 250        | 1.06      | 1.02    | 29300   | 0.03    | 25.9    | 7.8     | 20        | 3.59    | 2630    | 21200   | 16.95        | 0.09      |
| 14130                   | 3.33    | 85100    | 2.1        | 440        | 0.62      | 2       | 26200   | 0.01    | 15.5    | 5       | 15        | 3.56    | 5530    | 18000   | 18.25        | 0.08      |
| 14144                   | 2.52    | 93900    | 5.1        | 380        | 0.84      | 2.32    | 37500   | 0.01    | 20.7    | 1.1     | 5         | 5.29    | 3410    | 36100   | 20           | 0.1       |
| 14148                   | 1.75    | 81100    | 2.6        | 560        | 0.9       | 1.98    | 46300   | 0.01    | 22.7    | 11      | 4         | 4.68    | 2880    | 38300   | 18.75        | 0.1       |
| 14156                   | 1.76    | 76900    | 1.1        | 280        | 1.56      | 1.47    | 24700   | 0.01    | 23.3    | 5.4     | 25        | 2.49    | 2090    | 17400   | 20.5         | 0.07      |
| 14162                   | 0.53    | 79700    | 2.1        | 510        | 0.92      | 2.13    | 55900   | 0.01    | 25.2    | 20.8    | 71        | 2.12    | 1020    | 42500   | 14.85        | 0.1       |
| 14169                   | 2.84    | 76400    | 1.9        | 100        | 1.09      | 6.51    | 23200   | 0.01    | 7.62    | 4.2     | 16        | 1.19    | 3820    | 11800   | 18.85        | 0.05      |
| 14232                   | 1.73    | 94400    | 3.5        | 140        | 0.95      | 0.84    | 26600   | 0.01    | 22.2    | 4.7     | 14        | 6.81    | 3370    | 26400   | 19.75        | 0.08      |
| 14250                   | 1.66    | 94400    | 3.4        | 170        | 0.75      | 1.14    | 40700   | 0.01    | 24.1    | 8.3     | 12        | 4.65    | 3170    | 45800   | 21           | 0.11      |
| 14260                   | 2.92    | 89500    | 2.6        | 170        | 0.73      | 6.57    | 30400   | 0.01    | 21.6    | 7.8     | 3         | 4.9     | 4880    | 42300   | 20           | 0.1       |
| 14276                   | 0.8     | 98400    | 7.5        | 1000       | 0.78      | 0.78    | 43100   | 0.13    | 21.2    | 8.8     | 17        | 2.68    | 1490    | 38900   | 20.3         | 0.08      |
| 14295                   | 0.51    | 89700    | 3.7        | 110        | 0.7       | 0.2     | 39100   | 0.02    | 18.6    | 18.6    | 12        | 4.81    | 2330    | 47300   | 18.95        | 0.1       |
| 14301                   | 0.39    | 87600    | 3.8        | 300        | 0.86      | 0.4     | 36600   | 0.01    | 20.1    | 10.4    | 15        | 3.85    | 2440    | 31300   | 18.05        | 0.09      |
| 14323                   | 1.33    | 93600    | 3.3        | 280        | 0.92      | 0.74    | 37500   | 0.01    | 20.5    | 8.8     | 3         | 6.79    | 2250    | 38700   | 20.5         | 0.09      |
| 14332                   | 1.36    | 96200    | 2.2        | 210        | 0.88      | 0.62    | 33900   | 0.01    | 23.9    | 7.7     | 3         | 5.41    | 3470    | 35500   | 20.8         | 0.09      |
| 14345                   | 2.38    | 97300    | 2.1        | 190        | 0.9       | 2.05    | 25500   | 0.01    | 26.4    | 7.2     | 11        | 4.35    | 6070    | 22100   | 20.4         | 0.09      |
| 14348                   | 1       | 94300    | 2.3        | 150        | 0.82      | 1.13    | 21500   | 0.01    | 24.6    | 8.4     | 11        | 4.61    | 4900    | 34700   | 20.1         | 0.09      |
| 14797                   | 1.03    | 86900    | 2.5        | 150        | 0.92      | 0.43    | 37800   | 0.01    | 15.4    | 10.5    | 6         | 6.37    | 1750    | 42700   | 19.85        | 0.11      |
| 14808                   | 2.27    | 81300    | 0.1        | 170        | 1.58      | 1.73    | 48700   | 0.01    | 21.5    | 9.2     | 6         | 5.38    | 2640    | 37600   | 18.75        | 0.33      |
| 14816                   | 2.15    | 82900    | 1.8        | 140        | 0.84      | 2.94    | 33300   | 0.01    | 18.3    | 10.1    | 5         | 5.98    | 3970    | 41300   | 21.4         | 0.12      |
| 14828                   | 2.42    | 89200    | 2.4        | 710        | 0.94      | 2.48    | 43400   | 0.01    | 23.8    | 10.3    | 4         | 5.11    | 3260    | 41200   | 20.9         | 0.13      |
| 14844                   | 1.35    | 91800    | 3.7        | 300        | 0.67      | 1.02    | 28200   | 0.01    | 15.75   | 19      | 39        | 8.05    | 2990    | 51800   | 22           | 0.12      |
| 14680                   | 3.36    | 90500    | 1.8        | 300        | 2.27      | 5.64    | 41400   | 0.01    | 27.1    | 11      | 5         | 10.45   | 3950    | 41400   | 21           | 0.28      |
| 14871                   | 1.02    | 96200    | 2.3        | 120        | 0.74      | 1.28    | 34000   | 0.01    | 18.75   | 12.7    | 10        | 5.3     | 3880    | 46100   | 21.4         | 0.11      |
| 14887                   | 0.41    | 96900    | 2.9        | 340        | 0.68      | 0.28    | 51800   | 0.01    | 22.1    | 16.2    | 20        | 3.33    | 1990    | 53100   | 20.4         | 0.12      |
| 14689                   | 0.38    | 83800    | 1.4        | 120        | 1.01      | 0.44    | 21800   | 0.01    | 29.6    | 5.9     | 10        | 2.38    | 2020    | 14800   | 18.4         | 0.07      |
| 14695                   | 0.71    | 97000    | 0.1        | 170        | 0.89      | 1.19    | 39800   | 0.01    | 26.4    | 9.6     | 6         | 7.95    | 1500    | 39900   | 21.4         | 0.24      |
| 14742                   | 1.3     | 90600    | 0.5        | 120        | 1.35      | 4.71    | 27800   | 0.01    | 17.2    | 10.4    | 24        | 2.84    | 2100    | 33500   | 20.5         | 0.33      |
| 14666                   | 0.37    | 92100    | 4.8        | 330        | 0.78      | 0.13    | 39300   | 0.01    | 19.3    | 21.9    | 21        | 4.19    | 1440    | 53900   | 21.9         | 0.1       |
| 14685                   | 1.13    | 85900    | 6.6        | 380        | 1.04      | 0.51    | 33100   | 0.01    | 22.1    | 35.4    | 5         | 5.87    | 4330    | 63900   | 22.7         | 0.1       |
| 14685B                  | 1       | 83100    | 5.9        | 310        | 1 1       | 0.48    | 29500   | 0.01    | 19 45   | 30.6    | 7         | 5.85    | 4570    | 59700   | 21.8         | 0.11      |
| 14545                   | 0.26    | 94700    | 3.4        | 860        | 0.8       | 0.08    | 38200   | 0.01    | 24.1    | 10.3    | 16        | 4 7     | 1210    | 41700   | 21.2         | 0.1       |
| 14565                   | 0.47    | 88300    | 3          | 220        | 0.7       | 0.39    | 45800   | 0.01    | 22.7    | 87      | 11        | 5 46    | 2670    | 37200   | 18 65        | 0.09      |
| 14571                   | 1.92    | 82200    | 32         | 430        | 0.99      | 1.04    | 25900   | 0.01    | 20.9    | 12.9    | 7         | 5.37    | 5450    | 26900   | 18.05        | 0.00      |
| 14578                   | 0.65    | 86800    | 5.2        | 640        | 1 16      | 0.33    | 42000   | 0.01    | 23.9    | 15.8    | 9         | 6.35    | 2980    | 41600   | 19.4         | 0.1       |
| 14578B                  | 0.03    | 82400    | 4.5        | 760        | 1.10      | 0.31    | 43200   | 0.01    | 22.5    | 15.0    | 10        | 6.22    | 3280    | 39200   | 20.4         | 0.1       |
| 14598                   | 0.39    | 92500    | 27         | 220        | 0.85      | 1.23    | 33500   | 0.01    | 16 15   | 15.9    | 3         | 4.8     | 703     | 46600   | 22.6         | 0.09      |
| 14893                   | 0.55    | 92000    | 45         | 400        | 0.00      | 0.56    | 41600   | 0.01    | 18 75   | 18.3    | 44        | 5.02    | 1630    | 53/00   | 22.0         | 0.00      |
| 1/800                   | 0.07    | 92000    | 4.0<br>8 1 | 33U<br>490 | 0.01      | 0.00    | 35400   | 0.01    | 15.2    | 22.6    | 44<br>12  | 2.23    | 400     | 56000   | 22.0         | 0.11      |
| 14008                   | 0.20    | 05000    | 6.7        | 600        | 0.70      | 0.10    | 37000   | 0.01    | 10.6    | 15      | -+3<br>20 | 2.00    | 1140    | 53300   | 24.Z         | 0.12      |
| 14017                   | 0.39    | 90000    | 17         | 740        | 0.09      | 0.29    | 37900   | 0.01    | 19.0    | CI<br>A | 39        | 2.29    | 2800    | 24200   | ∠3.3<br>22 E | 0.11      |
| 14317                   | 2.33    | 00000    | 1.7        | 740        | 0.74      | 1.43    | 23200   | 0.01    | 20.1    | 9.4     | 01        | 2.21    | 3000    | 24200   | 23.5         | 0.1       |
| 14920                   | 0.71    | 87800    | 3.5        | 390        | 0.71      | 0.58    | 30000   | 0.01    | 17.85   | 13.9    | 30        | 4.58    | 1010    | 40200   | 22.7         | 0.12      |
| 14990                   | 0.72    | 90100    | 3.4        | 280        | 0.63      | 0.53    | 39800   | 0.01    | 20.1    | 12.8    | 6         | 5.88    | 1400    | 43600   | 21.6         | 0.12      |
| 15862                   | 0.74    | 8/200    | 2.2        | 290        | 0.66      | 0.49    | 42200   | 0.01    | 19.1    | 12.2    | 4         | 5.75    | 1180    | 41600   | 21           | 0.1       |
| 15870                   | 1.17    | 81000    | 2.6        | 1030       | 0.46      | 0.54    | 46400   | 0.01    | 20.6    | 10.3    | 27        | 4.53    | 2020    | 39200   | 20.4         | 0.12      |

## Schaft Creek

Copper Fox Metals Inc.

nalerite

ICP Metals Data

Sampled by MDAG on Feb 7'07.

Rare earth elements may not be totally soluble in MS61 method.

ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

| Sample                                      | Silver           | Aluminum         | Arsenic          | Barium           | Beryllium        | Bismuth          | Calcium          | Cadmium          | Cerium           | Cobalt           | Chromium         | Cesium           | Copper           | Iron             | Gallium          | Germanium        |
|---------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| ld.                                         | Ag               | AI               | As               | Ba               | Be               | Bi               | Ca               | Cd               | Ce               | Co               | Cr               | Cs               | Cu               | Fe               | Ga               | Ge               |
| Method                                      | (ppm)<br>ME-MS61 |
| MDL                                         | 0.01             | 100              | 0.2              | 10               | 0.05             | 0.01             | 100              | 0.02             | 0.01             | 0.1              | 1                | 0.05             | 0.2              | 100              | 0.05             | 0.05             |
| Crustal Abundance: From                     | 0.037            | 4200             | 1                | 0.4              | 1                | 0.007            | 5100             | 0.035            | 11.5             | 0.1              | 2                | 0.4              | 4                | 3800             | 4                | 0.2              |
| Crustal Abundance: To                       | 0.11             | 88000            | 13               | 2300             | 3                | 0.01             | 312400           | 0.42             | 345              | 74               | 170              | 6                | 250              | 86500            | 30               | 8                |
| 15879                                       | 1.4              | 90600            | 2.4              | 760              | 0.67             | 0.51             | 48300            | 0.01             | 19.85            | 13.6             | 29               | 4.83             | 2150             | 51500            | 21.7             | 0.12             |
| 15887                                       | 2.42             | 87200            | 2                | 440              | 0.75             | 1.14             | 41200            | 0.01             | 15.05            | 14               | 25               | 5.1              | 5070             | 34600            | 21.4             | 0.12             |
| 15891                                       | 2.15             | 89500            | 1.7              | 1250             | 0.66             | 0.98             | 51300            | 0.01             | 17.35            | 9.7              | 22               | 5.24             | 2450             | 38500            | 21.4             | 0.11             |
| 15908                                       | 2.82             | 87100            | 1.5              | 260              | 0.77             | 1.3              | 45200            | 0.01             | 17.95            | 12.7             | 24               | 5.96             | 4260             | 34500            | 20.8             | 0.1              |
| 15911                                       | 1.2              | 88600            | 2.1              | 410              | 0.7              | 0.56             | 35200            | 0.01             | 19.5             | 14.8             | 33               | 6.92             | 1820             | 46500            | 22.2             | 0.1              |
| Maximum                                     | 3.36             | 98400            | 30.2             | 1250             | 2.27             | 6.57             | 55900            | 1.16             | 29.6             | 35.4             | 71               | 10.4             | 6070             | 63900            | 24.2             | 0.33             |
| Minimum                                     | 0.25             | 72400            | 0.1              | 100              | 0.46             | 0.08             | 14000            | 0.01             | 7.62             | 4.2              | 3                | 1.19             | 409              | 11800            | 14.8             | 0.05             |
| Mean                                        | 1.34             | 87481            | 5.08             | 412              | 0.91             | 1.26             | 35375            | 0.053            | 21               | 13               | 18.3             | 5.04             | 2661             | 38607            | 20               | 0.11             |
| Standard Deviation                          | 0.82             | 6660             | 5.75             | 273              | 0.28             | 1.42             | 9259             | 0.18             | 3.85             | 6.16             | 13.8             | 1.85             | 1333             | 11942            | 2.14             | 0.054            |
| 10 Percentile                               | 0.39             | 76980            | 1.66             | 140              | 0.67             | 0.27             | 23200            | 0.01             | 15.8             | 7.04             | 4                | 2.47             | 1210             | 21920            | 16.8             | 0.08             |
| 25 Percentile                               | 0.71             | 82650            | 2.1              | 215              | 0.74             | 0.46             | 28000            | 0.01             | 18.8             | 8.8              | 6.5              | 4.02             | 1620             | 32400            | 18.5             | 0.09             |
| Median                                      | 1.17             | 88300            | 3                | 330              | 0.86             | 0.86             | 36600            | 0.01             | 21.3             | 11               | 16               | 5.11             | 2440             | 39200            | 20.4             | 0.1              |
| 75 Percentile                               | 1.81             | 92300            | 5.15             | 505              | 1                | 1.36             | 41800            | 0.01             | 23.8             | 15.8             | 25               | 5.88             | 3440             | 46150            | 21.4             | 0.12             |
| 90 Percentile                               | 2.52             | 96200            | 14               | 762              | 1.17             | 2.35             | 46320            | 0.03             | 25.3             | 21               | 36.6             | 7.13             | 4632             | 53500            | 22.6             | 0.12             |
| Interguartile Range (IQR) <sup>1</sup>      | 1.1              | 9650             | 3.05             | 290              | 0.26             | 0.9              | 13800            | 0                | 5                | 6.95             | 18.5             | 1.85             | 1820             | 13750            | 2.88             | 0.03             |
| Variance                                    | 0.68             | 44356026         | 33               | 74305            | 0.078            | 2.01             | 85737446         | 0.032            | 14.8             | 38               | 191              | 3.44             | 1775728          | 142622022        | 4.57             | 0.0029           |
| Skewness                                    | 0.77             | -0.38            | 2.61             | 1.23             | 2.42             | 2.57             | -0.14            | 5.11             | -0.65            | 1.37             | 1.33             | 0.42             | 0.68             | -0.24            | -0.49            | 2.96             |
| Coefficient of Variation (CoV) <sup>2</sup> | 0.61             | 0.076            | 1.13             | 0.66             | 0.31             | 1.13             | 0.26             | 3.38             | 0.18             | 0.47             | 0.76             | 0.37             | 0.5              | 0.31             | 0.11             | 0.47             |
| Count                                       | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               |

3.36 NOTE: if data is boxed, then data is 3 times the maximum crustal abundance.

<sup>1</sup> Interquartile Range (IQR) = 75<sup>th</sup> percentile minus 25<sup>th</sup> percentile

<sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean

NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.

NOTE: If data was reported as > detection limit the detection limit is shown in bold and was used in subsequent calculations.

## Schaft Creek

Copper Fox Metals Inc. ICP Metals Data

Sampled by MDAG on Feb 7'07. Rare earth elements may not be totally soluble in MS61 method.

ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

| Sample                  | Hafnium | Mercury | Indium  | Potassium | Lanthanum | Lithium | Magnesium | Manganese | Molybdenum | Sodium  | Niobium | Nickel  | Phosphorus | Lead    | Rubidium | Rhenium |
|-------------------------|---------|---------|---------|-----------|-----------|---------|-----------|-----------|------------|---------|---------|---------|------------|---------|----------|---------|
| ld.                     | Hf      | Hg      | In      | ĸ         | La        | Li      | Mg        | Mn        | Mo         | Na      | Nb      | Ni      | Р          | Pb      | Rb       | Re      |
|                         | (ppm)   | (ppm)   | (ppm)   | (ppm)     | (ppm)     | (ppm)   | (ppm)     | (ppm)     | (ppm)      | (ppm)   | (ppm)   | (ppm)   | (ppm)      | (ppm)   | (ppm)    | (ppm)   |
| Method                  | ME-MS61 | Hg-CV41 | ME-MS61 | ME-MS61   | ME-MS61   | ME-MS61 | ME-MS61   | ME-MS61   | ME-MS61    | ME-MS61 | ME-MS61 | ME-MS61 | ME-MS61    | ME-MS61 | ME-MS61  | ME-MS61 |
| MDL                     | 0.1     | 0.01    | 0.005   | 100       | 0.5       | 0.2     | 100       | 5         | 0.05       | 100     | 0.1     | 0.2     | 10         | 0.5     | 0.1      | 0.002   |
| Crustal Abundance: From | 0.3     | 0.03    | 0.01    | 40        | 10        | 5       | 1600      | 390       | 0.2        | 400     | 0.3     | 2       | 170        | 1       | 0.2      | NA      |
| Crustal Abundance: To   | 11      | 0.4     | 0.26    | 48000     | 115       | 66      | 47000     | 6700      | 27         | 40400   | 35      | 225     | 1500       | 80      | 170      | NA      |
|                         |         |         |         |           |           |         |           |           |            |         |         |         |            |         |          |         |
| 14018                   | 1.9     | 0.01    | 0.065   | 24500     | 12.7      | 8.7     | 10700     | 476       | 36.3       | 31600   | 4.2     | 9.6     | 660        | 52      | 89.4     | 0.036   |
| 14021                   | 1.7     | 0.005   | 0.082   | 22200     | 11.9      | 9.6     | 9200      | 629       | 348        | 23800   | 3.4     | 6.9     | 570        | 91.3    | 129.5    | 0.178   |
| 14036                   | 1.7     | 0.005   | 0.087   | 21300     | 11.9      | 9.5     | 9100      | 475       | 658        | 24700   | 3       | 8.3     | 570        | 19.7    | 119.5    | 0.312   |
| 14043                   | 1.4     | 0.005   | 0.041   | 10300     | 6.8       | 17.7    | 19000     | 446       | 324        | 32900   | 2.6     | 11.6    | 570        | 4.7     | 61.3     | 0.146   |
| 14060                   | 2.2     | 0.005   | 0.053   | 12000     | 11.2      | 19.5    | 21000     | 422       | 220        | 30500   | 3.3     | 15.3    | 1290       | 5.8     | 67.9     | 0.133   |
| 14067                   | 1.6     | 0.005   | 0.046   | 11200     | 10.1      | 26      | 26800     | 779       | 90.6       | 35100   | 2.7     | 16.2    | 1120       | 40.8    | 53.8     | 0.116   |
| 14076                   | 1.9     | 0.01    | 0.06    | 14300     | 10.7      | 22.4    | 25000     | 1585      | 56.2       | 23000   | 2.6     | 15      | 1070       | 236     | 75.1     | 0.136   |
| 14083                   | 1.4     | 0.01    | 0.076   | 30900     | 10.6      | 19.2    | 17700     | 1365      | 13.2       | 13600   | 2.5     | 17.2    | 1070       | 20      | 165      | 0.033   |
| 14099                   | 1.4     | 0.02    | 0.04    | 32000     | 9.9       | 5.3     | 8200      | 1090      | 6.9        | 5400    | 3.2     | 6.5     | 470        | 23.4    | 177.5    | 0.002   |
| 14103                   | 1.9     | 0.01    | 0.072   | 18100     | 12.3      | 7.8     | 12900     | 686       | 231        | 25100   | 2.9     | 10.2    | 620        | 8.2     | 93.2     | 0.185   |
| 14130                   | 0.7     | 0.02    | 0.026   | 18100     | 6.3       | 3.5     | 10200     | 191       | 80.8       | 38300   | 3.8     | 4.1     | 1390       | 3.8     | 54.2     | 0.073   |
| 14144                   | 0.7     | 0.01    | 0.05    | 15600     | 8.7       | 8.3     | 11600     | 451       | 72.5       | 34900   | 5.1     | 4.2     | 1830       | 4.7     | 47.1     | 0.049   |
| 14148                   | 1       | 0.02    | 0.042   | 20600     | 10.6      | 13.3    | 18900     | 429       | 257        | 13800   | 4.2     | 5.5     | 1220       | 3.2     | 61.2     | 0.221   |
| 14156                   | 1.6     | 0.005   | 0.027   | 12200     | 10.8      | 7       | 7900      | 339       | 77.8       | 37400   | 4.5     | 8.1     | 500        | 2.5     | 37.7     | 0.02    |
| 14162                   | 1.9     | 0.005   | 0.062   | 16000     | 11.8      | 17.6    | 26200     | 853       | 479        | 19300   | 4.5     | 35      | 980        | 5.3     | 47.1     | 0.145   |
| 14169                   | 1.4     | 0.02    | 0.036   | 9700      | 2.8       | 3.5     | 4000      | 278       | 176.5      | 47600   | 3.9     | 5.9     | 550        | 7.1     | 28.5     | 0.043   |
| 14232                   | 0.9     | 0.01    | 0.05    | 16800     | 9.7       | 7.4     | 9100      | 189       | 97.4       | 42800   | 4.5     | 2.7     | 1430       | 2.5     | 55.2     | 0.09    |
| 14250                   | 0.8     | 0.01    | 0.053   | 14600     | 11        | 15      | 18800     | 436       | 374        | 38300   | 4.3     | 2.5     | 1450       | 3.3     | 57.8     | 0.346   |
| 14260                   | 0.8     | 0.01    | 0.09    | 15900     | 9.7       | 7.2     | 13900     | 275       | 173        | 38600   | 4       | 2.8     | 1390       | 3.8     | 61.3     | 0.145   |
| 14276                   | 1.2     | 0.005   | 0.073   | 7600      | 9.1       | 11.6    | 16400     | 1085      | 22.8       | 40800   | 4.4     | 1.7     | 1440       | 6.7     | 20.9     | 0.008   |
| 14295                   | 0.9     | 0.02    | 0.054   | 16000     | 8.3       | 12.1    | 15500     | 436       | 11.9       | 33600   | 4.1     | 4.5     | 1360       | 4.4     | 63.7     | 0.002   |
| 14301                   | 1.4     | 0.01    | 0.058   | 19200     | 8.5       | 10.3    | 12400     | 517       | 215        | 27300   | 4.4     | 4.2     | 1380       | 3.6     | 56.5     | 0.137   |
| 14323                   | 1       | 0.005   | 0.037   | 18200     | 8.9       | 7.5     | 9600      | 386       | 67.7       | 35000   | 4.6     | 2.2     | 1410       | 2.7     | 48.2     | 0.05    |
| 14332                   | 1.1     | 0.01    | 0.055   | 20200     | 10.7      | 8.2     | 10400     | 281       | 102        | 32400   | 4.6     | 2.6     | 1470       | 2.8     | 64.7     | 0.072   |
| 14345                   | 0.8     | 0.005   | 0.053   | 24000     | 12.1      | 6.9     | 10300     | 150       | 250        | 36900   | 3.9     | 3.1     | 1380       | 2.3     | 80.6     | 0.15    |
| 14348                   | 0.9     | 0.01    | 0.053   | 18700     | 10.9      | 11.3    | 12100     | 191       | 170.5      | 38200   | 4.4     | 3       | 1520       | 2.3     | 65.9     | 0.135   |
| 14797                   | 0.9     | 0.01    | 0.029   | 19500     | 6.4       | 16      | 15200     | 559       | 212        | 26700   | 4.6     | 4.2     | 1330       | 3.3     | 54.7     | 0.147   |
| 14808                   | 1.2     | 0.06    | 0.037   | 20800     | 10.1      | 11.8    | 16300     | 493       | 580        | 20000   | 4       | 4.6     | 1080       | 7.6     | 83.3     | 0.936   |
| 14816                   | 0.8     | 0.02    | 0.068   | 20900     | 7.8       | 9.4     | 17000     | 438       | 52.3       | 26700   | 4.9     | 5.2     | 1230       | 2.8     | 59.1     | 0.052   |
| 14828                   | 0.8     | 0.03    | 0.032   | 17500     | 10.7      | 10.2    | 18200     | 507       | 182.5      | 32900   | 5       | 3.9     | 1280       | 5.9     | 65.3     | 0.119   |
| 14844                   | 1.1     | 0.02    | 0.032   | 16900     | 6.9       | 26.3    | 37900     | 319       | 128        | 24600   | 5.9     | 23.4    | 1290       | 2.7     | 63.3     | 0.143   |
| 14680                   | 1.8     | 0.02    | 0.035   | 16000     | 12.7      | 18.9    | 16500     | 493       | 500        | 34600   | 5.1     | 5.5     | 1300       | 5.4     | 84.9     | 0.326   |
| 14871                   | 1       | 0.01    | 0.042   | 12300     | 8.7       | 12.3    | 19200     | 374       | 240        | 44300   | 5.9     | 7.3     | 1230       | 2.7     | 65.6     | 0.109   |
| 14887                   | 1.1     | 0.01    | 0.042   | 11700     | 10.7      | 13      | 24700     | 613       | 8.29       | 35400   | 5.8     | 10.6    | 1200       | 2.8     | 51.1     | 0.003   |
| 14689                   | 1.4     | 0.005   | 0.029   | 16400     | 14.4      | 3.3     | 5600      | 301       | 84.7       | 34300   | 2.7     | 6.4     | 540        | 1.6     | 42.9     | 0.065   |
| 14695                   | 1.8     | 0.01    | 0.0025  | 22100     | 12.5      | 5.8     | 15100     | 611       | 641        | 30000   | 4.7     | 7.6     | 1400       | 3.4     | 83.4     | 0.499   |
| 14742                   | 1.4     | 0.01    | 0.019   | 12800     | 8.2       | 11.2    | 22400     | 401       | 661        | 43600   | 5.4     | 16.2    | 1220       | 20.6    | 62       | 0.436   |
| 14666                   | 1       | 0.005   | 0.048   | 12900     | 8.7       | 27.7    | 22000     | 543       | 28.4       | 35800   | 7       | 15.5    | 1250       | 2.2     | 42.3     | 0.04    |
| 14685                   | 1       | 0.04    | 0.058   | 12100     | 9.5       | 25.9    | 27300     | 364       | 120        | 32000   | 4.5     | 9.1     | 1530       | 2.8     | 47.7     | 0.113   |
| 14685B                  | 1.4     | 0.04    | 0.056   | 13200     | 8.7       | 24.9    | 28400     | 327       | 77.4       | 33900   | 4.3     | 7.9     | 1530       | 2.4     | 67.7     | 0.088   |
| 14545                   | 1.5     | 0.005   | 0.055   | 11800     | 11        | 7.9     | 14000     | 273       | 14.05      | 35000   | 5.5     | 1.3     | 1330       | 2.4     | 52.5     | 0.004   |
| 14565                   | 1.2     | 0.005   | 0.069   | 18600     | 10.1      | 9.9     | 12100     | 529       | 12.65      | 29900   | 5.1     | 1.6     | 1270       | 2.3     | 67.6     | 0.011   |
| 14571                   | 1.4     | 0.01    | 0.058   | 14200     | 9.7       | 6.4     | 11700     | 230       | 101        | 32200   | 4.2     | 4.7     | 1030       | 3.6     | 53.4     | 0.062   |
| 14578                   | 1.6     | 0.01    | 0.027   | 15800     | 10.1      | 7.6     | 11800     | 337       | 27         | 31500   | 5       | 6.7     | 1550       | 2.8     | 53.5     | 0.033   |
| 14578B                  | 2.2     | 0.01    | 0.028   | 15800     | 9.4       | 8.2     | 12700     | 345       | 31.3       | 32900   | 4.9     | 5.8     | 1470       | 2.4     | 58.1     | 0.04    |
| 14598                   | 0.7     | 0.005   | 0.022   | 12400     | 6.5       | 14.1    | 22100     | 631       | 53.3       | 31400   | 5.9     | 3.9     | 1540       | 2.3     | 26.5     | 0.071   |
| 14893                   | 1.5     | 0.01    | 0.034   | 10200     | 9         | 16.7    | 27200     | 493       | 101        | 36600   | 6.5     | 19.8    | 1260       | 3.1     | 52.4     | 0.033   |
| 14899                   | 0.9     | 0.01    | 0.024   | 7700      | 7         | 26.2    | 41300     | 546       | 19.2       | 34100   | 6.1     | 22.1    | 1260       | 3.3     | 18.9     | 0.014   |
| 14908                   | 1.4     | 0.005   | 0.042   | 13700     | 9         | 17      | 24000     | 527       | 102.5      | 44700   | 7 1     | 18 7    | 1310       | 2.8     | 41 1     | 0.082   |
| 14917                   | 2.3     | 0.01    | 0.023   | 16100     | 11        | 21.2    | 18300     | 379       | 17.15      | 47300   | 4.6     | 84      | 1100       | 3.8     | 50.4     | 0.01    |
| 14925                   | 12      | 0.01    | 0.045   | 15400     | 7.8       | 16.2    | 20400     | 408       | 27.5       | 35600   | 6.8     | 16      | 1230       | 2.5     | 55       | 0.009   |
| 14998                   | 0.9     | 0.01    | 0.036   | 12500     | 8.6       | 14.9    | 16300     | 452       | 65.2       | 41400   | 4.8     | 22      | 1440       | 2.5     | 42 7     | 0.035   |
| 15862                   | 0.7     | 0.01    | 0.027   | 14800     | 8.2       | 12.4    | 17400     | 584       | 74         | 34400   | 5       | 4.4     | 1260       | 2.4     | 40.8     | 0.042   |
| 15870                   | 1       | 0.005   | 0.035   | 18500     | 99        | 74      | 17700     | 539       | 17 9       | 26200   | 56      | 12.4    | 1120       | 3.2     | 70.5     | 0.01    |
|                         |         | 0.000   | 0.000   |           | 0.0       |         |           | 000       |            | 20200   | 0.0     |         |            | U.L     |          | 0.01    |

## Schaft Creek

Copper Fox Metals Inc.

ICP Metals Data

Sampled by MDAG on Feb 7'07.

Rare earth elements may not be totally soluble in MS61 method.

ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

| Sample                                      | Hafnium          | Mercury          | Indium           | Potassium        | Lanthanum        | Lithium          | Magnesium        | Manganese        | Molybdenum       | Sodium           | Niobium          | Nickel           | Phosphorus       | Lead             | Rubidium         | Rhenium          |
|---------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| ld.                                         | Hf               | Hg               | In               | К                | La               | Li               | Mg               | Mn               | Мо               | Na               | Nb               | Ni               | Р                | Pb               | Rb               | Re               |
| Method                                      | (ppm)<br>ME-MS61 | (ppm)<br>Hg-CV41 | (ppm)<br>ME-MS61 |
| MDL                                         | 0.1              | 0.01             | 0.005            | 100              | 0.5              | 0.2              | 100              | 5                | 0.05             | 100              | 0.1              | 0.2              | 10               | 0.5              | 0.1              | 0.002            |
| Crustal Abundance: From                     | 0.3              | 0.03             | 0.01             | 40               | 10               | 5                | 1600             | 390              | 0.2              | 400              | 0.3              | 2                | 170              | 1                | 0.2              | NA               |
| Crustal Abundance: To                       | 11               | 0.4              | 0.26             | 48000            | 115              | 66               | 47000            | 6700             | 27               | 40400            | 35               | 225              | 1500             | 80               | 170              | NA               |
| 15879                                       | 1.2              | 0.01             | 0.035            | 14900            | 9.4              | 10.4             | 18800            | 554              | 20               | 32900            | 6.9              | 15.3             | 1280             | 3.8              | 56.7             | 0.018            |
| 15887                                       | 1                | 0.01             | 0.044            | 11900            | 6.7              | 11.3             | 15900            | 395              | 165.5            | 39300            | 6.5              | 11.6             | 1090             | 3.5              | 39.8             | 0.213            |
| 15891                                       | 0.9              | 0.01             | 0.021            | 17200            | 7.7              | 10.8             | 17300            | 558              | 104              | 34900            | 5.4              | 10.8             | 1120             | 3.6              | 60.8             | 0.08             |
| 15908                                       | 1                | 0.03             | 0.039            | 18000            | 8.4              | 10.9             | 18500            | 433              | 311              | 29000            | 6.1              | 12.6             | 1130             | 2.8              | 69.3             | 0.226            |
| 15911                                       | 1                | 0.02             | 0.027            | 13800            | 9.2              | 11.6             | 23100            | 402              | 154              | 32500            | 6.6              | 17.7             | 1250             | 2.5              | 69.5             | 0.135            |
| Maximum                                     | 2.3              | 0.06             | 0.09             | 32000            | 14.4             | 27.7             | 41300            | 1585             | 661              | 47600            | 7.1              | 35               | 1830             | 236              | 178              | 0.94             |
| Minimum                                     | 0.7              | 0.005            | 0.0025           | 7600             | 2.8              | 3.3              | 4000             | 150              | 6.9              | 5400             | 2.5              | 1.3              | 470              | 1.6              | 18.9             | 0.002            |
| Mean                                        | 1.26             | 0.013            | 0.045            | 16247            | 9.54             | 12.8             | 17175            | 498              | 162              | 32500            | 4.71             | 9.02             | 1189             | 11.6             | 63.3             | 0.12             |
| Standard Deviation                          | 0.42             | 0.01             | 0.018            | 4772             | 1.99             | 6.3              | 7171             | 260              | 173              | 8004             | 1.19             | 6.66             | 309              | 32.9             | 28.3             | 0.15             |
| 10 Percentile                               | 0.8              | 0.005            | 0.026            | 11600            | 6.88             | 6.8              | 9180             | 275              | 16.5             | 23640            | 2.98             | 2.58             | 570              | 2.38             | 40.6             | 0.0098           |
| 25 Percentile                               | 0.9              | 0.005            | 0.032            | 12650            | 8.45             | 8.05             | 11950            | 354              | 33.8             | 29450            | 4.05             | 4.2              | 1095             | 2.6              | 49.3             | 0.034            |
| Median                                      | 1.2              | 0.01             | 0.042            | 15900            | 9.7              | 11.3             | 16500            | 446              | 101              | 33600            | 4.6              | 6.9              | 1260             | 3.3              | 58.1             | 0.08             |
| 75 Percentile                               | 1.5              | 0.01             | 0.056            | 18550            | 10.8             | 16.4             | 20700            | 550              | 218              | 36750            | 5.45             | 12.5             | 1390             | 5.35             | 67.8             | 0.14             |
| 90 Percentile                               | 1.9              | 0.02             | 0.07             | 21460            | 11.9             | 22.9             | 26320            | 705              | 395              | 41680            | 6.5              | 17.3             | 1480             | 20.1             | 85.8             | 0.24             |
| Interquartile Range (IQR) <sup>1</sup>      | 0.6              | 0.005            | 0.024            | 5900             | 2.3              | 8.4              | 8750             | 196              | 184              | 7300             | 1.4              | 8.3              | 295              | 2.75             | 18.5             | 0.11             |
| Variance                                    | 0.17             | 0.0001           | 0.00033          | 22775295         | 3.98             | 39.7             | 51419515         | 67837            | 29834            | 64062759         | 1.41             | 44.3             | 95722            | 1086             | 802              | 0.023            |
| Skewness                                    | 0.68             | 2.59             | 0.42             | 1.01             | -0.45            | 0.84             | 0.98             | 2.21             | 1.63             | -0.9             | 0.088            | 1.43             | -1               | 5.92             | 2.14             | 3.26             |
| Coefficient of Variation (CoV) <sup>2</sup> | 0.33             | 0.81             | 0.4              | 0.29             | 0.21             | 0.49             | 0.42             | 0.52             | 1.07             | 0.25             | 0.25             | 0.74             | 0.26             | 2.84             | 0.45             | 1.24             |
| Count                                       | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               | 59               |

3.36 NOTE: if data is boxed, then data is 3 times the maximum crustal abundance.

<sup>1</sup> Interquartile Range (IQR) =  $75^{\text{th}}$  percentile minus  $25^{\text{th}}$  percentile

<sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean

NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.

NOTE: If data was reported as > detection limit the detection limit is shown in bold and was used in subsequent calculations.

## Schaft Creek

Copper Fox Metals Inc.

ICP Metals Data

Sampled by MDAG on Feb 7'07.

Rare earth elements may not be totally soluble in MS61 method.

ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

| Sample                  | Sulphur | Antimony    | Scandium  | Selenium | Tin     | Strontium  | Tantalum | Tellurium | Thorium | Titanium | Thallium | Uranium | Vanadium   | Tungsten    | Yttrium | Zinc     | Zirconium    |
|-------------------------|---------|-------------|-----------|----------|---------|------------|----------|-----------|---------|----------|----------|---------|------------|-------------|---------|----------|--------------|
| ld.                     | S       | Sb          | Sc        | Se       | Sn      | Sr         | Та       | Те        | Th      | Ti       | TI       | U       | V          | W           | Y       | Zn       | Zr           |
|                         | (ppm)   | (ppm)       | (ppm)     | (ppm)    | (ppm)   | (ppm)      | (ppm)    | (ppm)     | (ppm)   | (ppm)    | (ppm)    | (ppm)   | (ppm)      | (ppm)       | (ppm)   | (ppm)    | (ppm)        |
| Method                  | ME-MS61 | ME-MS61     | ME-MS61   | ME-MS61  | ME-MS61 | ME-MS61    | ME-MS61  | ME-MS61   | ME-MS61 | ME-MS61  | ME-MS61  | ME-MS61 | ME-MS61    | ME-MS61     | ME-MS61 | ME-MS61  | ME-MS61      |
| MDL                     | 100     | 0.05        | 1         | 1        | 0.2     | 0.2        | 0.05     | 0.05      | 0.2     | 50       | 0.02     | 0.1     | 1          | 0.1         | 0.1     | 2        | 0.5          |
| Crustal Abundance: From | 240     | 0.1         | NA        | 0.05     | 0.5     | 1          | 0.8      | NA        | 0.004   | 300      | 0.16     | 0.45    | 20         | 0.6         | 20      | 16       | 19           |
| Crustal Abundance: To   | 2400    | 1.5         | NA        | 0.6      | 6       | 2000       | 4.2      | NA        | 17      | 13800    | 2.3      | 3.7     | 250        | 2.2         | 90      | 165      | 500          |
|                         |         |             |           |          | 1       |            |          |           |         |          |          |         | -          | 10.0        |         |          |              |
| 14018                   | 8800    | 3.69        | 7.9       | 2        | 1.1     | 428        | 0.32     | 0.26      | 3.7     | 2400     | 0.6      | 2.3     | 70         | 12.8        | 10.8    | 41       | 50.3         |
| 14021                   | 7000    | 6.36        | 7.7       | 2        | 1.2     | 173        | 0.28     | 0.09      | 3.3     | 2080     | 0.75     | 1.9     | 65         | 18.4        | 12.5    | 56       | 45.5         |
| 14036                   | 16000   | 7.99        | 1.3       | 4        | 1.5     | 235        | 0.21     | 0.72      | 3.3     | 1970     | 0.71     | 1.9     | 67         | 23          | 10.2    | 41       | 41.3         |
| 14043                   | 2800    | 4.34        | 10.2      | 2        | 1       | 276        | 0.22     | 0.07      | 2.3     | 2190     | 0.42     | 1.4     | 102        | 27          | 1.0     | 45       | 40.3         |
| 14060                   | 14600   | 2.49        | 01.1      | 3        | 11      | 423        | 0.22     | 0.06      | 2.4     | 4100     | 0.44     | 1.0     | 100        | 30.1        | 17.1    | 21       | 00.3<br>40.5 |
| 14007                   | 4300    | 3.0<br>5.5  | 21.1      | 4        | 1.1     | 410        | 0.17     | 0.00      | 1.5     | 4170     | 0.30     | 1.1     | 102        | 6.5         | 17.5    | 162      | 49.0         |
| 14070                   | 9500    | 5.0         | 24.4      | 2        | 1.2     | 303        | 0.10     | 0.10      | 1.9     | 4340     | 0.47     | 0.0     | 204        | 0.5         | 19.9    | 103      | 10.6         |
| 14085                   | 3600    | 3.00        | 24.1<br>5 | 1        | 1.0     | 232        | 0.10     | 0.27      | 27      | 4460     | 1.04     | 1.9     | 204<br>17  | 10.3        | 8.0     | 205      | 40.0         |
| 14035                   | 7700    | 4.72        | 10.2      | 3        | 0.0     | 107.5      | 0.24     | 0.05      | 2.1     | 2220     | 0.67     | 1.9     | 110        | 20.2        | 10.2    | 205      | 51.2         |
| 14130                   | 3200    | 1.25        | 6.3       | 5        | 0.9     | 288        | 0.24     | 0.00      | 0.8     | 2800     | 0.07     | 0.3     | 73         | 5.6         | 12.7    | 26       | 19.7         |
| 14130                   | 2800    | 2.5         | 6.8       | 4        | 0.0     | 343        | 0.22     | 0.54      | 0.0     | 3760     | 0.20     | 0.5     | 91         | 4           | 16.2    | 46       | 19.6         |
| 14148                   | 1400    | 2.35        | 11 4      | 3        | 1.2     | 223        | 0.25     | 0.01      | 0.8     | 3780     | 0.31     | 0.0     | 146        | 49          | 15.6    | 40       | 28.9         |
| 14156                   | 1700    | 1.66        | 5.6       | 3        | 1.1     | 259        | 0.33     | 0.09      | 3.1     | 1900     | 0.07     | 1.9     | 47         | 10.5        | 8.5     | 35       | 39.3         |
| 14162                   | 1500    | 2 42        | 21.4      | 2        | 12      | 239        | 0.28     | 0.00      | 1.8     | 4270     | 0.22     | 1 1     | 159        | 52          | 15.7    | 67       | 59.6         |
| 14169                   | 3200    | 1.63        | 5.9       | 3        | 1.9     | 207        | 0.3      | 0.46      | 2.8     | 1960     | 0.15     | 1.7     | 65         | 13          | 6.3     | 24       | 36.9         |
| 14232                   | 1600    | 3.64        | 6.8       | 3        | 1.1     | 345        | 0.27     | 0.23      | 0.9     | 3290     | 0.3      | 0.5     | 87         | 3.5         | 14.5    | 21       | 23.6         |
| 14250                   | 2000    | 3.46        | 12.1      | 3        | 1.4     | 424        | 0.25     | 0.29      | 0.8     | 4350     | 0.28     | 0.5     | 236        | 3.3         | 16.9    | 38       | 18.3         |
| 14260                   | 3700    | 2.5         | 11.4      | 6        | 1.6     | 402        | 0.23     | 0.85      | 0.7     | 4050     | 0.31     | 0.5     | 144        | 4.5         | 14.3    | 36       | 17.6         |
| 14276                   | 1700    | 10.95       | 7.2       | 2        | 1       | 798        | 0.28     | 0.07      | 1       | 4100     | 0.14     | 0.6     | 112        | 4.9         | 17.8    | 112      | 29.9         |
| 14295                   | 4900    | 3.4         | 14.1      | 2        | 1.8     | 336        | 0.25     | 0.08      | 0.7     | 4240     | 0.38     | 0.7     | 154        | 15.6        | 14.8    | 34       | 23.5         |
| 14301                   | 3500    | 2.57        | 11        | 3        | 1.6     | 209        | 0.26     | 0.13      | 1       | 3620     | 0.3      | 0.6     | 117        | 10.5        | 14.7    | 38       | 47.1         |
| 14323                   | 1500    | 2.29        | 6.5       | 2        | 1.3     | 391        | 0.27     | 0.17      | 0.8     | 3310     | 0.31     | 0.4     | 94         | 3.3         | 15.5    | 29       | 29.3         |
| 14332                   | 2700    | 1.94        | 6.9       | 2        | 1.4     | 355        | 0.27     | 0.19      | 0.9     | 3260     | 0.32     | 0.5     | 103        | 3.5         | 16.6    | 31       | 32.2         |
| 14345                   | 5600    | 2.33        | 7.3       | 5        | 3.8     | 274        | 0.24     | 0.29      | 0.9     | 2970     | 0.41     | 0.6     | 101        | 14.5        | 14.8    | 27       | 20           |
| 14348                   | 4800    | 2.53        | 6.8       | 3        | 1.7     | 276        | 0.27     | 0.19      | 0.9     | 3190     | 0.4      | 0.5     | 74         | 5.8         | 13.9    | 40       | 22.1         |
| 14/9/                   | 700     | 4.83        | 11        | 3        | 1.2     | 234        | 0.28     | 0.15      | 0.6     | 4150     | 0.38     | 0.3     | 152        | 5.7         | 12      | 42       | 20.9         |
| 14808                   | 1900    | 5.13        | 9.8       | /<br>    | 1.4     | 221        | 0.24     | 0.45      | 1       | 3260     | 0.43     | 0.7     | 117        | 4.5         | 14.5    | 34       | 34           |
| 14816                   | 4700    | 3.45        | 10.9      | 5        | 1.7     | 285        | 0.28     | 0.77      | 0.7     | 3810     | 0.36     | 0.4     | 144        | 0.2         | 13.1    | 49       | 18.4         |
| 14626                   | 2200    | 5.28        | 17.0      | 0        | 1.1     | 404<br>265 | 0.29     | 0.3       | 0.0     | 5500     | 0.29     | 0.4     | 262        | 3.3         | 17.0    | 3Z<br>40 | 20.7         |
| 14680                   | 2200    | 5.20        | 12.8      | 8        | 1.4     | 348        | 0.33     | 0.23      | 11      | 4040     | 0.43     | 0.0     | 151        | 4.8         | 17.8    | 38       | 64.4         |
| 14871                   | 3800    | 4 15        | 12.0      | 4        | 1.7     | 405        | 0.31     | 0.10      | 1       | 4990     | 0.40     | 0.7     | 183        | 4.0         | 15.3    | 43       | 22.6         |
| 14887                   | 5400    | 1 41        | 14        | 2        | 1.7     | 424        | 0.33     | 0.09      | 12      | 4960     | 0.32     | 0.7     | 188        | 52          | 15.0    | 39       | 22.0         |
| 14689                   | 7900    | 1 27        | 5.3       | 3        | 0.9     | 141        | 0.00     | 0.15      | 3.1     | 1580     | 0.18     | 16      | 51         | 3           | 8.3     | 16       | 33.4         |
| 14695                   | 1600    | 3.83        | 11.9      | 5        | 1.5     | 226        | 0.25     | 0.18      | 1       | 4310     | 0.23     | 0.9     | 161        | 6           | 14.9    | 49       | 48.5         |
| 14742                   | 2100    | 2.37        | 15.2      | 7        | 1.9     | 302        | 0.34     | 0.23      | 1.6     | 4690     | 0.25     | 0.9     | 215        | 6.6         | 12      | 53       | 32.7         |
| 14666                   | 3800    | 3.07        | 15.1      | 3        | 1.5     | 416        | 0.41     | 0.06      | 1.3     | 5070     | 0.27     | 1       | 209        | 8           | 15.4    | 38       | 27.7         |
| 14685                   | 21000   | 3.51        | 25.5      | 6        | 2.2     | 393        | 0.26     | 0.15      | 1.3     | 7690     | 0.32     | 1       | 269        | 5.5         | 14.5    | 43       | 35           |
| 14685B                  | 20400   | 3.19        | 23.4      | 5        | 1.9     | 374        | 0.25     | 0.14      | 1.4     | 7930     | 0.37     | 0.9     | 276        | 5.2         | 13.6    | 46       | 43.4         |
| 14545                   | 1900    | 1.48        | 8.5       | 1        | 1.4     | 409        | 0.36     | 0.05      | 1.5     | 3980     | 0.26     | 0.8     | 90         | 4.2         | 16.3    | 26       | 44.7         |
| 14565                   | 2600    | 4.4         | 8.3       | 2        | 1.4     | 259        | 0.32     | 0.14      | 1.3     | 3800     | 0.37     | 0.6     | 80         | 4.7         | 16.9    | 16       | 32.5         |
| 14571                   | 11100   | 2.6         | 7.8       | 5        | 1.4     | 312        | 0.28     | 0.15      | 2.3     | 3170     | 0.26     | 1.3     | 86         | 4.8         | 11.2    | 34       | 42           |
| 14578                   | 21300   | 2.42        | 11        | 4        | 1.4     | 324        | 0.33     | 0.11      | 1.8     | 4630     | 0.29     | 1.2     | 112        | 4.1         | 15.9    | 19       | 56           |
| 14578B                  | 21100   | 2.47        | 11.3      | 4        | 1.4     | 330        | 0.3      | 0.09      | 2       | 4430     | 0.32     | 1.2     | 111        | 4.1         | 17.1    | 19       | 74.1         |
| 14598                   | 1500    | 1.89        | 8.4       | 2        | 0.9     | 569        | 0.36     | 0.06      | 0.6     | 4330     | 0.28     | 0.4     | 131        | 2.7         | 13.2    | 47       | 22.7         |
| 14893                   | 1100    | 6.95        | 20.1      | 3        | 1.7     | 379        | 0.36     | 0.12      | 1.3     | 6030     | 0.25     | 1.5     | 283        | 9.3         | 15.3    | 49       | 40.7         |
| 14899                   | 200     | 3.09        | 19.4      | 2        | 1       | 300        | 0.34     | 0.06      | 1       | 5850     | 0.16     | 0.6     | 262        | 8.2         | 13.8    | 52       | 25.5         |
| 14908                   | 900     | 4.87        | 19        | 2        | 1.6     | 4/9        | 0.39     | 0.1       | 1.6     | 5910     | 0.22     | 1.2     | 268        | 12.1        | 16.7    | 42       | 34.7         |
| 14317                   | 1900    | 4.0<br>6.54 | 165       | 4        | 1.7     | 309        | 0.3      | 0.20      | ∠.ŏ     | 4080     | 0.22     | 1.7     | 1/0        | 0.9         | 10.1    | 44<br>50 | 14.3         |
| 14920                   | 1200    | 0.04        | 10.0      | 3        | 1.7     | 303<br>110 | 0.38     | 0.11      | 1.4     | 2090     | 0.29     | 0.7     | 224<br>150 | 0.1<br>12.5 | 15      | ⊃∠<br>∕1 | 31           |
| 14990                   | 800     | 2.17        | 10.0      | 3<br>2   | 1.4     | 41Z<br>307 | 0.20     | 0.10      | 0.7     | 4400     | 0.3      | 0.0     | 1752       | 20          | 10.0    | 41<br>⊿0 | 22.0<br>17 9 |
| 15870                   | 1400    | 6.6         | 14.3      | 2        | 1.1     | 234        | 0.23     | 0.12      | 13      | 4000     | 0.23     | 0.5     | 203        | 6.1         | 16 1    | 40<br>53 | 23.4         |
|                         | 1 100   | 0.0         | 14.0      | 5        | 1       | 207        | 0.01     | 0.10      | 1.0     | - 700    | 0.00     | 0.0     | 200        | 0.1         | 10.1    | 00       | 20.7         |

### Schaft Creek

Copper Fox Metals Inc.

ICP Metals Data

Sampled by MDAG on Feb 7'07.

Rare earth elements may not be totally soluble in MS61 method.

ICP-MS: Interference: Samples with Molybdenum >100ppm will cause a low bias on Cadmium-MS61<1ppm Interference: Mo>400ppm on ICP-MS Cd,ICP-AES results shown.

Sample Sulphur Antimony Scandium Selenium Tin Strontium Tantalum Tellurium Thorium Titanium Thallium Uranium Vanadium Tungsten Yttrium Zinc Zirconium ld. S Sb Sc Se Sn Sr Та Те Th Ti ΤI U V W Υ Zn Zr (ppm) (ppm) (mag) (mag) (mag) (mag) (ppm) (mag) (ppm) (mag) (mag) (ppm) (ppm) (mag) (mag) (mag) (mag) ME-MS61 Method MDL 100 0.05 0.2 0.2 0.05 0.05 0.2 50 0.02 0.1 0.1 0.1 2 0.5 1 1 1 240 NA 16 Crustal Abundance: From 0.1 0.05 0.5 1 0.8 NA 0.004 300 0.16 0.45 20 0.6 20 19 2400 NA 2000 500 Crustal Abundance: To 1.5 0.6 6 4.2 NA 17 13800 2.3 3.7 250 2.2 90 165 15879 1200 7.41 17.1 3 1.3 373 0.39 0.16 1.5 5450 0.28 0.9 246 3.3 16 63 27.3 15887 3300 5.99 15.3 1.7 402 0.34 0.37 5100 0.24 0.7 214 3.6 13.6 42 23.2 5 1 15891 1400 7.05 15 4 1.3 382 0.3 0.23 1.1 4920 0.31 0.6 213 5.3 15.1 51 19.4 15908 2200 6.21 14.2 5 1.5 288 0.32 0.29 1.2 4740 0.34 0.8 207 5.4 15.5 43 26.1 15911 900 4.97 17.9 3 1.3 335 0.37 0.13 1.5 5430 0.29 0.7 248 3 15.3 49 26.4 Maximum 21300 11 25.5 8 3.8 798 0.41 0.85 3.7 7930 1.04 2.3 283 30.1 19.9 205 74.3 200 1.25 88 0.16 0.05 0.6 1580 0.14 0.3 47 2.7 6.3 17.6 Minimum 5 1 0.6 16 4966 3.93 4086 0.35 0.93 152 8.08 48.1 Mean 12.6 3.46 1.41 330 0.29 0.22 1.5 14.4 34.9 Standard Deviation 5631 1.97 5.39 1.53 0.44 108 0.055 0.19 0.81 1307 0.17 0.5 66.7 6.18 2.86 32 14.5 10 Percentile 1180 1.71 6.74 2 1 219 0.22 0.06 0.7 2168 0.22 0.4 69.4 3.3 10.4 25.6 19.7 25 Percentile 1500 2.45 7.85 2 1.1 259 0.25 0.095 0.9 3275 0.27 0.6 97.5 4.15 13.2 34 23 Median 2700 3.51 11.4 3 1.4 335 0.28 0.16 1.3 4150 0.31 0.8 146 5.5 15 42 32.2 75 Percentile 5150 5.15 15.4 4 1.6 398 0.32 0.26 1.8 4715 0.38 1.2 206 10.4 16.2 49 42.7 90 Percentile 15040 6.55 20.3 5.2 1.72 423 0.36 0.5 2.84 5478 0.51 1.72 251 16 17.2 67 55.8 2.7 2 Interguartile Range (IQR)<sup>1</sup> 3650 7.55 0.5 138 0.075 0.17 0.9 1440 0.11 0.6 108 6.25 3 15 19.7 31711935 3.88 29.1 2.36 0.19 11719 0.0031 0.037 0.66 1709027 0.03 0.25 4454 38.2 8.16 1027 211 Variance Skewness 1.91 1.03 0.69 0.9 2.75 1.22 0.037 1.81 1.15 0.35 2.21 0.95 0.29 1.9 -0.91 3.21 1 Coefficient of Variation (CoV)<sup>2</sup> 1.13 0.5 0.43 0.44 0.33 0.19 0.86 0.54 0.32 0.49 0.53 0.44 0.76 0.2 0.67 0.42 0.31 Count 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59

3.36 NOTE: if data is boxed, then data is 3 times the maximum crustal abundance.

<sup>1</sup> Interquartile Range (IQR) = 75<sup>th</sup> percentile minus 25<sup>th</sup> percentile

<sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean

NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.

NOTE: If data was reported as > detection limit the detection limit is shown in bold and was used in subsequent calculations.

# Project: Schaft Creek Client: Copper Fox Metals Inc. Data: Whole Rock by XRF Comments: Sampled by MDAG on Feb 7'07.

| Sample |           |          |               |                                |                                |                  |          |          |                   |          |                  |          |                  |              |          |
|--------|-----------|----------|---------------|--------------------------------|--------------------------------|------------------|----------|----------|-------------------|----------|------------------|----------|------------------|--------------|----------|
| ld.    | $AI_2O_3$ | BaO      | CaO           | Cr <sub>2</sub> O <sub>3</sub> | Fe <sub>2</sub> O <sub>3</sub> | K <sub>2</sub> O | MgO      | MnO      | Na <sub>2</sub> O | $P_2O_5$ | SiO <sub>2</sub> | SrO      | TiO <sub>2</sub> | LOI          | Total    |
|        | (%)       | (%)      | (%)           | (%)                            | (%)                            | (%)              | (%)      | (%)      | (%)               | (%)      | (%)              | (%)      | (%)              | (%)          | (%)      |
| Method | ME-XRF06  | ME-XRF06 | ME-XRF06      | ME-XRF06                       | ME-XRF06                       | ME-XRF06         | ME-XRF06 | ME-XRF06 | ME-XRF06          | ME-XRF06 | ME-XRF06         | ME-XRF06 | ME-XRF06         | ME-XRF06     | ME-XRF06 |
| MDL    | 0.01      | 0.01     | 0.01          | 0.01                           | 0.01                           | 0.01             | 0.01     | 0.01     | 0.01              | 0.01     | 0.01             | 0.01     | 0.01             |              |          |
| 14019  | 16.0      | 0.42     | 2.52          | 0.005                          | 0.77                           | 2.02             | 1 74     | 0.05     | 4.04              | 0.14     | 62.02            | 0.05     | 0.40             | 2.60         | 00.50    |
| 14010  | 10.2      | 0.13     | 2.55          | 0.005                          | 3.77                           | 2.92             | 1.74     | 0.05     | 4.01              | 0.14     | 62.92            | 0.05     | 0.42             | 3.09         | 90.00    |
| 14021  | 14.75     | 0.05     | 3.50          | 0.005                          | 2.62                           | 2.59             | 1.47     | 0.07     | 2.96              | 0.12     | 65.03            | 0.02     | 0.36             | 4.80         | 98.47    |
| 14030  | 14.93     | 0.06     | 2.00          | 0.005                          | 3.72                           | 2.51             | 1.51     | 0.05     | 3.13              | 0.12     | 04.09            | 0.03     | 0.30             | 4.53         | 90.43    |
| 14043  | 15.21     | 0.03     | 1.98          | 0.005                          | 4.23                           | 1.18             | 3.06     | 0.05     | 4.13              | 0.12     | 64.74            | 0.03     | 0.41             | 3.53         | 98.71    |
| 14060  | 15.10     | 0.04     | 4.27          | 0.005                          | 5.14                           | 1.42             | 3.20     | 0.05     | 3.71              | 0.20     | 50.10            | 0.05     | 0.73             | 0.10         | 90.40    |
| 14007  | 16.07     | 0.04     | 5.54          | 0.01                           | 0.10                           | 1.29             | 4.07     | 0.09     | 4.15              | 0.22     | 57.69            | 0.04     | 0.7              | 4.00         | 90.17    |
| 14076  | 16.09     | 0.05     | 5.01          | 0.005                          | 7.43                           | 1.58             | 3.72     | 0.19     | 2.64              | 0.21     | 55.56            | 0.04     | 0.72             | 5.1          | 98.95    |
| 14000  | 10.4      | 0.06     | 0.00          | 0.005                          | 0.20                           | 3.49             | 2.02     | 0.17     | 1.62              | 0.21     | 53.34            | 0.02     | 0.74             | 0.20         | 90.77    |
| 14099  | 15.15     | 0.1      | 4.16          | 0.005                          | 3.38                           | 3.94             | 1.47     | 0.14     | 0.73              | 0.11     | 63.71            | 0.01     | 0.31             | 5.67         | 98.89    |
| 14103  | 17 11     | 0.03     | 4.03          | 0.005                          | 3.11                           | 2.07             | 2.04     | 0.00     | 2.99              | 0.13     | 61.55            | 0.02     | 0.41             | 5.91         | 90.30    |
| 14130  | 17.11     | 0.06     | 3.59          | 0.005                          | 2.0                            | 2.11             | 1.01     | 0.02     | 4.01              | 0.20     | 60.15<br>52.0    | 0.03     | 0.53             | 5.91         | 90.02    |
| 14144  | 16.29     | 0.04     | 4.95          | 0.005                          | 5.05                           | 1.04             | 1.01     | 0.05     | 4.05              | 0.30     | 53.6             | 0.04     | 0.63             | 7.40         | 90.40    |
| 14140  | 10.00     | 0.07     | 0.20          | 0.005                          | 2.03                           | 2.49             | 3.13     | 0.05     | 1.72              | 0.20     | 52               | 0.03     | 0.64             | 9.00         | 90.97    |
| 14150  | 10.04     | 0.03     | 3.29          | 0.005                          | Z.40<br>5.02                   | 1.41             | 1.21     | 0.03     | 4.55              | 0.1      | 64.96<br>50.21   | 0.03     | 0.29             | 4.00         | 90.30    |
| 14102  | 14.30     | 0.00     | 7.5           | 0.01                           | 1.60                           | 1.79             | 3.97     | 0.1      | 2.21              | 0.2      | 50.21            | 0.02     | 0.09             | 2.74         | 90.20    |
| 14109  | 15.54     | 0.01     | 3.13          | 0.005                          | 1.09                           | 1.07             | 0.01     | 0.03     | 5.76              | 0.12     | 66.91            | 0.02     | 0.31             | 5.74         | 90.97    |
| 14252  | 19.47     | 0.02     | 5.07          | 0.005                          | 5.60                           | 2.01             | 1.40     | 0.02     | 3.31              | 0.3      | 50.55            | 0.04     | 0.01             | 5.19         | 90.04    |
| 14250  | 10.02     | 0.02     | 5.47<br>4 1 0 | 0.005                          | 6.09                           | 1.07             | 2.07     | 0.05     | 4.40              | 0.20     | 51.91            | 0.04     | 0.75             | 6.29         | 90.40    |
| 14200  | 17.00     | 0.02     | 4.10          | 0.005                          | 0.23                           | 1.9              | 2.21     | 0.03     | 4.77              | 0.20     | 54.02            | 0.04     | 0.72             | 3.77         | 90.03    |
| 14270  | 19.76     | 0.12     | 5.07          | 0.005                          | 0.0<br>6.91                    | 0.00             | 2.30     | 0.14     | 4.97              | 0.29     | 54.07            | 0.00     | 0.67             | 5.49<br>6.49 | 90.49    |
| 14295  | 17.3      | 0.01     | 1.02          | 0.005                          | 0.01                           | 1.03             | 2.43     | 0.05     | 2 2 2 2           | 0.27     | 53.55            | 0.03     | 0.73             | 7.05         | 90.90    |
| 14301  | 17.72     | 0.03     | 4.93          | 0.005                          | 4.47                           | 2.34             | 1 55     | 0.06     | 3.33              | 0.20     | 54.60            | 0.02     | 0.7              | 7.95         | 90.70    |
| 14323  | 19.07     | 0.03     | J.02<br>4.67  | 0.005                          | 5.04                           | 2.1              | 1.55     | 0.04     | 4.17              | 0.20     | 54.05            | 0.04     | 0.50             | 5.5          | 90.00    |
| 14332  | 10.52     | 0.02     | 2.44          | 0.005                          | 2.19                           | 2.40             | 1.71     | 0.03     | 4.03              | 0.3      | 57.5             | 0.04     | 0.0              | 5.57         | 09.57    |
| 14343  | 10.02     | 0.02     | 3.00          | 0.005                          | 5.10                           | 2.75             | 1.04     | 0.01     | 4.47              | 0.20     | 54.97            | 0.03     | 0.50             | 5.10         | 08 13    |
| 14340  | 19.93     | 0.02     | 5.09          | 0.005                          | 5.12                           | 2.20             | 1.97     | 0.02     | 4.79              | 0.31     | 54.97            | 0.03     | 0.01             | 9.01         | 90.13    |
| 14757  | 15.10     | 0.02     | 5.12          | 0.005                          | 5.44                           | 2.20             | 2.40     | 0.00     | 2.5               | 0.27     | 52.62            | 0.03     | 0.7              | 10.21        | 90.50    |
| 14816  | 17.11     | 0.02     | 4.56          | 0.005                          | 6.06                           | 2.45             | 2.02     | 0.00     | 2.5               | 0.25     | 53 34            | 0.02     | 0.50             | 7.62         | 08.24    |
| 14878  | 17.11     | 0.02     | 4.JU          | 0.005                          | 5.75                           | 1.04             | 2.70     | 0.05     | 3.23              | 0.20     | 51.87            | 0.03     | 0.03             | 8.24         | 08.24    |
| 14844  | 17.61     | 0.00     | 3.8           | 0.005                          | 7.4                            | 1.04             | 5.94     | 0.00     | 2 92              | 0.20     | 52 79            | 0.04     | 0.00             | 5.17         | 08.01    |
| 14680  | 17.54     | 0.04     | 5.54          | 0.000                          | 631                            | 1.50             | 25       | 0.05     | 4.05              | 0.20     | 53 34            | 0.03     | 0.55             | 6.08         | 08.24    |
| 14871  | 18.56     | 0.03     | 4.62          | 0.005                          | 6.55                           | 1.36             | 2.0      | 0.00     | 5 16              | 0.20     | 53 53            | 0.04     | 0.82             | 4 77         | 98 58    |
| 14887  | 17.6      | 0.04     | 6.71          | 0.005                          | 7 31                           | 1.00             | 3.61     | 0.07     | 4.05              | 0.23     | 50.56            | 0.04     | 0.02             | 6.23         | 98.49    |
| 14689  | 15 75     | 0.01     | 2 71          | 0.005                          | 1.96                           | 1.21             | 0.91     | 0.03     | 4 34              | 0.11     | 66.25            | 0.02     | 0.33             | 3.81         | 98.15    |
| 14695  | 17 98     | 0.02     | 4 98          | 0.005                          | 5 19                           | 2.57             | 2 41     | 0.07     | 3 57              | 0.26     | 53.38            | 0.02     | 0.68             | 7 34         | 98.48    |
| 14742  | 18.48     | 0.02     | 3.84          | 0.005                          | 4.8                            | 1 49             | 3 39     | 0.04     | 5 21              | 0.25     | 54 87            | 0.02     | 0.86             | 4 97         | 98.26    |
| 14666  | 17 45     | 0.04     | 5.2           | 0.005                          | 7.38                           | 1.53             | 3.59     | 0.06     | 4 43              | 0.25     | 53 21            | 0.04     | 0.84             | 4 88         | 98.91    |
| 14685  | 16.54     | 0.05     | 4 49          | 0.005                          | 8.92                           | 1.00             | 4 51     | 0.00     | 4 03              | 0.20     | 49.87            | 0.04     | 1.38             | 7.01         | 98.67    |
| 14685B | 16.58     | 0.04     | 4.16          | 0.005                          | 9.45                           | 1.54             | 4.37     | 0.04     | 3.98              | 0.3      | 50.4             | 0.04     | 1.38             | 5.99         | 98.28    |
| 14545  | 18.58     | 0.1      | 5 18          | 0.005                          | 5.98                           | 1.37             | 2 17     | 0.03     | 4 2               | 0.27     | 56 26            | 0.04     | 0.65             | 4 1          | 98.94    |
| 14565  | 17.23     | 0.02     | 6.05          | 0.005                          | 5.25                           | 2.14             | 1.89     | 0.06     | 3.57              | 0.26     | 53.85            | 0.03     | 0.63             | 7.44         | 98.43    |
| 14571  | 16.48     | 0.05     | 3.51          | 0.005                          | 3.99                           | 1.76             | 2.03     | 0.02     | 4.32              | 0.22     | 59.95            | 0.04     | 0.59             | 5.14         | 98.11    |
| 14578  | 16.78     | 0.07     | 5.57          | 0.005                          | 5.71                           | 1.89             | 1.99     | 0.04     | 4                 | 0.31     | 54.01            | 0.03     | 0.86             | 7.27         | 98.54    |
| 14578B | 16.4      | 0.09     | 5.75          | 0.005                          | 5.95                           | 1.84             | 1.97     | 0.04     | 3.91              | 0.3      | 54.47            | 0.03     | 0.82             | 6.61         | 98.19    |
| 14598  | 19.18     | 0.02     | 4.52          | 0.005                          | 6.5                            | 1.54             | 3.79     | 0.07     | 3.95              | 0.31     | 52.94            | 0.06     | 0.74             | 5.22         | 98.85    |
| 14893  | 17.39     | 0.05     | 5.57          | 0.005                          | 7.59                           | 1.11             | 4.07     | 0.06     | 4.23              | 0.25     | 50.42            | 0.04     | 1                | 6.37         | 98.16    |
| 14899  | 18.24     | 0.04     | 4.77          | 0.005                          | 8.14                           | 0.9              | 6.3      | 0.06     | 3.94              | 0.25     | 48.95            | 0.04     | 0.97             | 5.91         | 98.52    |
| 14908  | 17.57     | 0.08     | 4.99          | 0.005                          | 7.49                           | 1.51             | 3.56     | 0.06     | 5.09              | 0.26     | 52.92            | 0.05     | 0.97             | 3.87         | 98.43    |
| 14917  | 16.75     | 0.09     | 3.18          | 0.005                          | 3.43                           | 1.86             | 2.74     | 0.04     | 5.62              | 0.22     | 59.61            | 0.03     | 0.8              | 3.75         | 98.13    |
| 14925  | 17.48     | 0.04     | 4.83          | 0.005                          | 6.57                           | 1.8              | 3.11     | 0.05     | 4.16              | 0.25     | 54.26            | 0.04     | 0.88             | 4.77         | 98.25    |
| 14998  | 17.84     | 0.03     | 5.3           | 0.005                          | 6.2                            | 1.39             | 2.47     | 0.05     | 4.81              | 0.28     | 53.76            | 0.04     | 0.72             | 5.99         | 98.89    |
| 15862  | 17.45     | 0.03     | 5.66          | 0.005                          | 6.02                           | 1.73             | 2.74     | 0.07     | 4.12              | 0.26     | 52.87            | 0.03     | 0.68             | 7.2          | 98.87    |
| 15870  | 15.28     | 0.12     | 6.1           | 0.005                          | 5.48                           | 2.09             | 2.68     | 0.06     | 3.07              | 0.23     | 54.41            | 0.03     | 0.74             | 8.21         | 98.51    |
| 15879  | 17.04     | 0.09     | 6.38          | 0.005                          | 7.37                           | 1.69             | 2.84     | 0.06     | 3.81              | 0.25     | 50.72            | 0.04     | 0.9              | 7.09         | 98.29    |
| 15887  | 17.84     | 0.05     | 5.62          | 0.005                          | 5.41                           | 1.4              | 2.46     | 0.04     | 4.64              | 0.22     | 54.43            | 0.04     | 0.86             | 5.38         | 98.40    |
### Project: Schaft Creek Client: Copper Fox Metals Inc. Data: Whole Rock by XRF Comments: Sampled by MDAG on Feb 7'07.

| Sample                                      |           |          |          |           |                                |                  |          |          |                   |          |                  |          |                  |          |          |
|---------------------------------------------|-----------|----------|----------|-----------|--------------------------------|------------------|----------|----------|-------------------|----------|------------------|----------|------------------|----------|----------|
| ld.                                         | $AI_2O_3$ | BaO      | CaO      | $Cr_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | K <sub>2</sub> O | MgO      | MnO      | Na <sub>2</sub> O | $P_2O_5$ | SiO <sub>2</sub> | SrO      | TiO <sub>2</sub> | LOI      | Total    |
|                                             | (%)       | (%)      | (%)      | (%)       | (%)                            | (%)              | (%)      | (%)      | (%)               | (%)      | (%)              | (%)      | (%)              | (%)      | (%)      |
| Method                                      | ME-XRF06  | ME-XRF06 | ME-XRF06 | ME-XRF06  | ME-XRF06                       | ME-XRF06         | ME-XRF06 | ME-XRF06 | ME-XRF06          | ME-XRF06 | ME-XRF06         | ME-XRF06 | ME-XRF06         | ME-XRF06 | ME-XRF06 |
| MDL                                         | 0.01      | 0.01     | 0.01     | 0.01      | 0.01                           | 0.01             | 0.01     | 0.01     | 0.01              | 0.01     | 0.01             | 0.01     | 0.01             |          |          |
| 15891                                       | 17.63     | 0.15     | 6.76     | 0.005     | 5.43                           | 1.99             | 2.66     | 0.06     | 4.12              | 0.23     | 51.38            | 0.04     | 0.86             | 7.61     | 98.93    |
| 15908                                       | 17.38     | 0.03     | 6.09     | 0.005     | 4.92                           | 2.09             | 2.86     | 0.05     | 3.44              | 0.23     | 53.48            | 0.03     | 0.81             | 7.13     | 98.55    |
| 15911                                       | 17.39     | 0.05     | 4.88     | 0.005     | 6.78                           | 1.62             | 3.54     | 0.05     | 3.89              | 0.25     | 52.8             | 0.04     | 0.91             | 5.87     | 98.08    |
| Maximum                                     | 19.9      | 0.15     | 7.5      | 0.01      | 9.45                           | 3.94             | 6.3      | 0.19     | 5.76              | 0.36     | 66.9             | 0.08     | 1.38             | 11.1     |          |
| Minimum                                     | 14.4      | 0.01     | 1.98     | 0.005     | 1.69                           | 0.86             | 0.61     | 0.01     | 0.73              | 0.1      | 49               | 0.01     | 0.29             | 3.49     |          |
| Mean                                        | 17.2      | 0.048    | 4.76     | 0.0053    | 5.54                           | 1.89             | 2.69     | 0.057    | 3.91              | 0.24     | 55.5             | 0.035    | 0.7              | 6.02     |          |
| Standard Deviation                          | 1.37      | 0.033    | 1.19     | 0.0011    | 1.7                            | 0.58             | 1.08     | 0.033    | 0.95              | 0.06     | 4.56             | 0.011    | 0.22             | 1.65     |          |
| 10 Percentile                               | 15.2      | 0.02     | 3.17     | 0.005     | 3.17                           | 1.28             | 1.5      | 0.03     | 2.86              | 0.12     | 50.7             | 0.02     | 0.4              | 3.86     |          |
| 25 Percentile                               | 16.3      | 0.02     | 3.82     | 0.005     | 4.64                           | 1.5              | 1.97     | 0.04     | 3.5               | 0.22     | 52.8             | 0.03     | 0.6              | 4.92     |          |
| Median                                      | 17.4      | 0.04     | 4.93     | 0.005     | 5.63                           | 1.84             | 2.62     | 0.05     | 4.03              | 0.25     | 54               | 0.04     | 0.7              | 5.91     |          |
| 75 Percentile                               | 17.9      | 0.06     | 5.59     | 0.005     | 6.56                           | 2.12             | 3.2      | 0.06     | 4.45              | 0.28     | 57               | 0.04     | 0.82             | 7.11     |          |
| 90 Percentile                               | 19.1      | 0.092    | 6.13     | 0.005     | 7.44                           | 2.52             | 3.99     | 0.082    | 4.99              | 0.3      | 63.9             | 0.04     | 0.91             | 8        |          |
| Interquartile Range (IQR) <sup>1</sup>      | 1.62      | 0.04     | 1.77     | 0         | 1.93                           | 0.62             | 1.24     | 0.02     | 0.94              | 0.06     | 4.19             | 0.01     | 0.21             | 2.18     |          |
| Variance                                    | 1.88      | 0.0011   | 1.43     | 1.2E-06   | 2.89                           | 0.33             | 1.18     | 0.0011   | 0.9               | 0.0036   | 20.8             | 0.00012  | 0.047            | 2.72     |          |
| Skewness                                    | -0.0061   | 1.24     | -0.16    | 4.2       | -0.21                          | 1.03             | 1.01     | 2.22     | -0.92             | -0.99    | 1.15             | 1.02     | 0.6              | 0.79     |          |
| Coefficient of Variation (CoV) <sup>2</sup> | 0.08      | 0.68     | 0.25     | 0.21      | 0.31                           | 0.31             | 0.4      | 0.59     | 0.24              | 0.25     | 0.082            | 0.32     | 0.31             | 0.27     |          |
| Count                                       | 59        | 59       | 59       | 59        | 59                             | 59               | 59       | 59       | 59                | 59       | 59               | 59       | 59               | 59       |          |
|                                             |           |          |          |           |                                |                  |          |          |                   |          |                  |          |                  |          |          |

<sup>1</sup> Interquartile Range (IQR) = 75<sup>th</sup> percentile minus 25<sup>th</sup> percentile

<sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean

NOTE: If data was reported as < detection limit half the detection limit is shown in italics and was used in subsequent calculations.

Project:

Client: Data: Comments:

Copper Fox Metals Inc. Calculated Mineralogy Sampled by MDAG on Feb 7'07. For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

|        | Calculated       | Calculated                            | Calculated       | Calculated | Calculated   | Calculated       | Calculated     |
|--------|------------------|---------------------------------------|------------------|------------|--------------|------------------|----------------|
| Sample | S (Pyrite)       | S (Chalcopyrite)                      | S (Arsenopyrite) | S (Galena) | S (Cinnibar) | S (Molybdenite)  | S (Sphalerite) |
| ld.    | FeS <sub>2</sub> | CuFeS <sub>2</sub> + CuS <sub>2</sub> | FeAsS + AsS      | PbS        | HaS          | MoS <sub>2</sub> | ZnS            |
|        | (%)              | (%)                                   | (%)              | (%)        | (%)          | (%)              | (%)            |
|        | (                |                                       |                  | ( · · · ·  | ( · · /      | (···/            | (17)           |
| 14018  | 0.632            | 0.130                                 | 0.00067          | 0.00081    | 0.000000160  | 0.0024           | 0.0021         |
| 14021  | 0.400            | 0.176                                 | 0.00105          | 0.00142    | 0.00000080   | 0.0232           | 0.0028         |
| 14036  | 1.211            | 0.194                                 | 0.00130          | 0.00031    | 0.00000080   | 0.0439           | 0.0021         |
| 14043  | 0.090            | 0.134                                 | 0.00047          | 0.00007    | 0.00000080   | 0.0216           | 0.0023         |
| 14060  | 0.340            | 0.264                                 | 0.00061          | 0.00009    | 0.00000080   | 0.0147           | 0.0014         |
| 14067  | 0.151            | 0.248                                 | 0.00074          | 0.00063    | 0.00000080   | 0.0060           | 0.0036         |
| 14076  | 0.612            | 0.131                                 | 0.00065          | 0.00366    | 0.000000160  | 0.0037           | 0.0082         |
| 14083  | 1.293            | 0.137                                 | 0.00060          | 0.00031    | 0.000000160  | 0.0009           | 0.0064         |
| 14099  | 0.181            | 0.122                                 | 0.00009          | 0.00036    | 0.00000320   | 0.0005           | 0.0103         |
| 14103  | -0.021           | 0.266                                 | 0.00024          | 0.00013    | 0.000000160  | 0.0154           | 0.0034         |
| 14130  | -0.275           | 0.559                                 | 0.00009          | 0.00006    | 0.00000320   | 0.0054           | 0.0013         |
| 14144  | -0.105           | 0.344                                 | 0.00022          | 0.00007    | 0.000000160  | 0.0048           | 0.0023         |
| 14148  | -0.190           | 0.291                                 | 0.00011          | 0.00005    | 0.00000320   | 0.0171           | 0.0020         |
| 14156  | -0.059           | 0.211                                 | 0.00005          | 0.00004    | 0.00000080   | 0.0052           | 0.0018         |
| 14162  | -0.018           | 0.103                                 | 0.00009          | 0.00008    | 0.00000080   | 0.0319           | 0.0034         |
| 14169  | -0.106           | 0.386                                 | 0.00008          | 0.00011    | 0.00000320   | 0.0118           | 0.0012         |
| 14232  | -0.207           | 0.340                                 | 0.00015          | 0.00004    | 0.000000160  | 0.0065           | 0.0011         |
| 14250  | -0.157           | 0.320                                 | 0.00015          | 0.00005    | 0.000000160  | 0.0249           | 0.0019         |
| 14260  | -0.166           | 0.493                                 | 0.00011          | 0.00006    | 0.000000160  | 0.0115           | 0.0018         |
| 14276  | -0.018           | 0.151                                 | 0.00032          | 0.00010    | 0.00000080   | 0.0015           | 0.0056         |
| 14295  | 0.195            | 0.235                                 | 0.00016          | 0.00007    | 0.00000320   | 0.0008           | 0.0017         |
| 14301  | 0.066            | 0.246                                 | 0.00016          | 0.00006    | 0.000000160  | 0.0143           | 0.0019         |
| 14323  | -0.095           | 0.227                                 | 0.00014          | 0.00004    | 0.00000080   | 0.0045           | 0.0015         |
| 14332  | -0.099           | 0.351                                 | 0.00009          | 0.00004    | 0.000000160  | 0.0068           | 0.0016         |
| 14345  | -0.111           | 0.613                                 | 0.00009          | 0.00004    | 0.00000080   | 0.0167           | 0.0014         |
| 14348  | -0.058           | 0.495                                 | 0.00010          | 0.00004    | 0.000000160  | 0.0114           | 0.0020         |
| 14797  | -0.122           | 0.177                                 | 0.00011          | 0.00005    | 0.000000160  | 0.0141           | 0.0021         |
| 14808  | -0.136           | 0.267                                 | 0.00000          | 0.00012    | 0.00000960   | 0.0387           | 0.0017         |
| 14816  | 0.053            | 0.401                                 | 0.00008          | 0.00004    | 0.00000320   | 0.0035           | 0.0025         |
| 14828  | -0.235           | 0.329                                 | 0.00010          | 0.00009    | 0.000000480  | 0.0122           | 0.0016         |
| 14844  | -0.113           | 0.302                                 | 0.00016          | 0.00004    | 0.00000320   | 0.0085           | 0.0020         |
| 14680  | -0.226           | 0.399                                 | 0.00008          | 0.00008    | 0.00000320   | 0.0333           | 0.0019         |
| 14871  | -0.047           | 0.392                                 | 0.00010          | 0.00004    | 0.000000160  | 0.0160           | 0.0022         |
| 14887  | 0.216            | 0.201                                 | 0.00012          | 0.00004    | 0.000000160  | 0.0006           | 0.0020         |
| 14689  | 0.479            | 0.204                                 | 0.00006          | 0.00002    | 0.00000080   | 0.0056           | 0.0008         |
| 14695  | -0.066           | 0.152                                 | 0.00000          | 0.00005    | 0.000000160  | 0.0427           | 0.0025         |
| 14742  | -0.069           | 0.212                                 | 0.00002          | 0.00032    | 0.000000160  | 0.0441           | 0.0027         |
| 14666  | 0.161            | 0.145                                 | 0.00021          | 0.00003    | 0.00000080   | 0.0019           | 0.0019         |
| 14685  | 1.352            | 0.437                                 | 0.00028          | 0.00004    | 0.00000640   | 0.0080           | 0.0022         |
| 14685B | 1.467            | 0.462                                 | 0.00025          | 0.00004    | 0.00000640   | 0.0052           | 0.0023         |
| 14545  | 0.039            | 0.122                                 | 0.00015          | 0.00004    | 0.00000080   | 0.0009           | 0.0013         |
| 14565  | -0.032           | 0.270                                 | 0.00013          | 0.00004    | 0.00000080   | 0.0008           | 0.0008         |
| 14571  | 0.471            | 0.551                                 | 0.00014          | 0.00006    | 0.000000160  | 0.0067           | 0.0017         |
| 14578  | 1.516            | 0.301                                 | 0.00022          | 0.00004    | 0.000000160  | 0.0018           | 0.0010         |
| 14578B | 1.575            | 0.331                                 | 0.00019          | 0.00004    | 0.000000160  | 0.0021           | 0.0010         |
| 14598  | 0.053            | 0.071                                 | 0.00012          | 0.00004    | 0.00000080   | 0.0036           | 0.0024         |
| 14893  | -0.094           | 0.165                                 | 0.00019          | 0.00005    | 0.000000160  | 0.0067           | 0.0025         |
| 14899  | -0.026           | 0.041                                 | 0.00035          | 0.00005    | 0.000000160  | 0.0013           | 0.0026         |
| 14908  | -0.054           | 0.115                                 | 0.00027          | 0.00004    | 0.00000080   | 0.0068           | 0.0021         |
| 14917  | -0.221           | 0.384                                 | 0.00007          | 0.00006    | 0.000000160  | 0.0011           | 0.0022         |
| 14925  | -0.041           | 0.163                                 | 0.00015          | 0.00004    | 0.000000160  | 0.0018           | 0.0026         |
| 14998  | -0.068           | 0.182                                 | 0.00015          | 0.00004    | 0.000000160  | 0.0043           | 0.0021         |
| 15862  | -0.058           | 0.119                                 | 0.00009          | 0.00004    | 0.000000160  | 0.0049           | 0.0025         |
| 15870  | -0.108           | 0.204                                 | 0.00011          | 0.00005    | 0.00000080   | 0.0012           | 0.0027         |
| 15879  | -0.126           | 0.217                                 | 0.00010          | 0.00006    | 0.000000160  | 0.0013           | 0.0032         |
| 15887  | -0.231           | 0.512                                 | 0.00009          | 0.00005    | 0.000000160  | 0.0110           | 0.0021         |
| 15891  | -0.153           | 0.247                                 | 0.00007          | 0.00006    | 0.000000160  | 0.0069           | 0.0026         |
| 15908  | -0.245           | 0.430                                 | 0.00006          | 0.00004    | 0.000000480  | 0.0207           | 0.0022         |

#### Schaft Creek Copper Fox Metals Inc.

Project: Client:

Data: Comments:

#### Calculated Mineralogy Sampled by MDAG on Feb 7'07.

For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample                                      | Calculated<br>S (Pyrite) | Calculated<br>S (Chalcopyrite) | Calculated<br>S (Arsenopyrite) | Calculated S (Galena) | Calculated<br>S (Cinnibar) | Calculated<br>S (Molvbdenite) | Calculated<br>S (Sphalerite) |
|---------------------------------------------|--------------------------|--------------------------------|--------------------------------|-----------------------|----------------------------|-------------------------------|------------------------------|
| ld.                                         | FeS <sub>2</sub>         | $CuFeS_2 + CuS_2$              | FeAsS + AsS                    | PbS                   | HgS                        | MoS <sub>2</sub>              | ZnS                          |
|                                             | (%)                      | (%)                            | (%)                            | (%)                   | (%)                        | (%)                           | (%)                          |
| 15911                                       | -0.122                   | 0.184                          | 0.00009                        | 0.00004               | 0.00000320                 | 0.0103                        | 0.0025                       |
| Maximum                                     | 1.58                     | 0.61                           | 0.0013                         | 0.0037                | 0.00000096                 | 0.044                         | 0.01                         |
| Minimum                                     | -0.28                    | 0.041                          | 0.0000043                      | 0.000025              | 0.0000008                  | 0.00046                       | 0.0008                       |
| Mean                                        | 0.14                     | 0.27                           | 0.00022                        | 0.00018               | 0.0000002                  | 0.011                         | 0.0024                       |
| Standard Deviation                          | 0.48                     | 0.13                           | 0.00025                        | 0.00051               | 0.0000016                  | 0.012                         | 0.0016                       |
| 10 Percentile                               | -0.21                    | 0.12                           | 0.000071                       | 0.000037              | 0.0000008                  | 0.0011                        | 0.0013                       |
| 25 Percentile                               | -0.12                    | 0.16                           | 0.00009                        | 0.00004               | 0.0000008                  | 0.0023                        | 0.0017                       |
| Median                                      | -0.054                   | 0.25                           | 0.00013                        | 0.000051              | 0.0000016                  | 0.0067                        | 0.0021                       |
| 75 Percentile                               | 0.17                     | 0.35                           | 0.00022                        | 0.000083              | 0.0000016                  | 0.014                         | 0.0024                       |
| 90 Percentile                               | 0.75                     | 0.47                           | 0.0006                         | 0.00031               | 0.0000032                  | 0.026                         | 0.0034                       |
| Interguartile Range (IQR) <sup>1</sup>      | 0.29                     | 0.18                           | 0.00013                        | 0.000043              | 0.0000008                  | 0.012                         | 0.00075                      |
| Variance                                    | 0.23                     | 0.018                          | 0.00000061                     | 0.0000026             | 2.7E-14                    | 0.00013                       | 0.0000026                    |
| Skewness                                    | 1.99                     | 0.68                           | 2.61                           | 5.92                  | 2.59                       | 1.63                          | 3.21                         |
| Coefficient of Variation (CoV) <sup>2</sup> | 3.39                     | 0.5                            | 1.13                           | 2.84                  | 0.81                       | 1.07                          | 0.67                         |
| Count                                       | 59                       | 59                             | 59                             | 59                    | 59                         | 59                            | 59                           |

Calculated S (Pyrite) (%) =

$$\label{eq:solution} \begin{split} & \mbox{${\rm S}$} ({\rm Sulphide}) + {\rm S}$ (del) - {\rm S}$ (Chalcopyrite) - {\rm S}$ (Arsenopyrite) - {\rm S}$ (Galena) - {\rm S}$ (Cinnibar) - {\rm S}$ (Molybdenite) - {\rm S}$ (Spt Calculated S (Chalcopyrite) CuFeS2 + CuS2 (%) = (1 / 0.99) * Copper (ppm) / 10000\\ Calculated S (Arsenopyrite) FeASS + AsS (%) = (1 / 2.33) * Iron (%) / 10000\\ Calculated S (Galena) PbS (%) = (1 / 6.45) * Iron (ppm) / 10000\\ Calculated S (Cinnibar) HgS (%) = (1 / 6.25) * Gallium (ppm) / 10000\\ \end{split}$$

Calculated S (Molybdenite) MoS2 (%) = (1 / 1.5) \* Germanium (ppm) / 10000 Calculated S (Sphalerite) ZnS (%) = (1 / 2) \* Hafnium (ppm) / 10000

| Sample         | Whole Rock              | ICP            |            | Whole Rock | ICP   |              | Whole Rock | ICP   |              | Whole Rock | ICP     |            | Whole Rock     | ICP            |                  |
|----------------|-------------------------|----------------|------------|------------|-------|--------------|------------|-------|--------------|------------|---------|------------|----------------|----------------|------------------|
| ld.            | AI *                    | AI             | Difference | Ba *       | Ва    | Difference   | Ca *       | Ca    | Difference   | Cr *       | Cr      | Difference | Fe *           | Fe             | Difference       |
|                | (ppm)                   | (ppm)          | (%) 3      | (ppm)      | (ppm) | (%) 3        | (ppm)      | (ppm) | (%) 3        | (ppm)      | (ppm)   | (%) 3      | (ppm)          | (ppm)          | (%) <sup>3</sup> |
| 14018          | 85735                   | 80300          | -6.34      | 1164       | 1120  | -3.81        | 18082      | 17800 | -1.56        | 34         | 24      | -29.85     | 26369          | 25800          | -2.16            |
| 14021          | 78061                   | 77000          | -1.36      | 448        | 460   | 2.72         | 25443      | 26200 | 2.97         | 34         | 21      | -38.62     | 18325          | 18100          | -1.23            |
| 14036          | 79014                   | 74100          | -6.22      | 537        | 500   | -6.96        | 18296      | 18400 | 0.57         | 34         | 20      | -41.54     | 26019          | 25600          | -1.61            |
| 14043          | 80495                   | 75600          | -6.08      | 269        | 230   | -14.40       | 14151      | 14000 | -1.07        | 34         | 31      | -9.38      | 29586          | 28500          | -3.67            |
| 14060          | 80231                   | 79600          | -0.79      | 358        | 380   | 6.07         | 30517      | 31400 | 2.89         | 34         | 26      | -24.00     | 35951          | 35900          | -0.14            |
| 14067          | 85047                   | 85100          | 0.06       | 358        | 370   | 3.28         | 25300      | 25900 | 2.37         | 68         | 36      | -47.38     | 43225          | 42900          | -0.75            |
| 14076          | 85153                   | 90000          | 5.69       | 448        | 410   | -8.45        | 40094      | 43400 | 8.24         | 34         | 33      | -3.54      | 51968          | 54600          | 5.06             |
| 14083          | 86793                   | 88500          | 1.97       | /1/        | 700   | -2.31        | 38093      | 40300 | 5.79         | 34         | 49      | 43.23      | 5///3          | 57800          | 0.05             |
| 14099          | 70294                   | 72400          | -9.70      | 090        | 250   | -14.03       | 29731      | 29500 | -0.76        | 34         | 20      | -55.25     | 23041          | 22300          | -5.67            |
| 14103          | 90551                   | 85100          | -4.20      | 537        | 440   | -0.30        | 25657      | 26200 | 2 11         | 34         | 15      | -56 15     | 18185          | 18000          | -2.54            |
| 14144          | 96796                   | 93900          | -2.99      | 358        | 380   | 6.07         | 35377      | 37500 | 6.00         | 34         | 5       | -85.38     | 35322          | 36100          | 2 20             |
| 14148          | 89069                   | 81100          | -8.95      | 627        | 560   | -10.68       | 44740      | 46300 | 3.49         | 34         | 4       | -88.31     | 39378          | 38300          | -2.74            |
| 14156          | 81183                   | 76900          | -5.28      | 269        | 280   | 4.21         | 23513      | 24700 | 5.05         | 34         | 25      | -26.92     | 17206          | 17400          | 1.13             |
| 14162          | 75997                   | 79700          | 4.87       | 537        | 510   | -5.10        | 53602      | 55900 | 4.29         | 68         | 71      | 3.77       | 41407          | 42500          | 2.64             |
| 14169          | 82242                   | 76400          | -7.10      | 90         | 100   | 11.65        | 22513      | 23200 | 3.05         | 34         | 16      | -53.23     | 11820          | 11800          | -0.17            |
| 14232          | 103041                  | 94400          | -8.39      | 179        | 140   | -21.85       | 26229      | 26600 | 1.41         | 34         | 14      | -59.08     | 26998          | 26400          | -2.22            |
| 14250          | 95367                   | 94400          | -1.01      | 179        | 170   | -5.10        | 39094      | 40700 | 4.11         | 34         | 12      | -64.92     | 46093          | 45800          | -0.64            |
| 14260          | 94467                   | 89500          | -5.26      | 179        | 170   | -5.10        | 29874      | 30400 | 1.76         | 34         | 3       | -91.23     | 43575          | 42300          | -2.93            |
| 14276          | 104575                  | 98400          | -5.91      | 1075       | 1000  | -6.96        | 41952      | 43100 | 2.74         | 34         | 17      | -50.31     | 39168          | 38900          | -0.69            |
| 14295          | 92615                   | 89700          | -3.15      | 90         | 110   | 22.81        | 37307      | 39100 | 4.81         | 34         | 12      | -64.92     | 47632          | 47300          | -0.70            |
| 14301          | 93779                   | 87600          | -6.59      | 269        | 300   | 11.65        | 35234      | 36600 | 3.88         | 34         | 15      | -56.15     | 31265          | 31300          | 0.11             |
| 14323          | 100924                  | 93600          | -7.26      | 269        | 280   | 4.21         | 35878      | 37500 | 4.52         | 34         | 3       | -91.23     | 38749          | 38700          | -0.13            |
| 14332          | 104001                  | 96200          | -0.10      | 179        | 210   | 6.07         | 33370      | 33900 | 1.57         | 34         | 3<br>11 | -91.23     | 22242          | 33500          | -2.21            |
| 14343          | 105305                  | 9/300          | -0.01      | 179        | 150   | -16.26       | 24000      | 21500 | -2.64        | 34         | 11      | -07.85     | 35811          | 34700          | -0.04            |
| 14797          | 96213                   | 86900          | -9.68      | 179        | 150   | -16.26       | 36592      | 37800 | 3.30         | 34         | 6       | -82.46     | 43365          | 42700          | -1.53            |
| 14808          | 82242                   | 81300          | -1.15      | 179        | 170   | -5.10        | 47456      | 48700 | 2.62         | 34         | 6       | -82.46     | 38049          | 37600          | -1.18            |
| 14816          | 90551                   | 82900          | -8.45      | 179        | 140   | -21.85       | 32590      | 33300 | 2.18         | 34         | 5       | -85.38     | 42386          | 41300          | -2.56            |
| 14828          | 90498                   | 89200          | -1.43      | 717        | 710   | -0.91        | 40738      | 43400 | 6.54         | 34         | 4       | -88.31     | 40218          | 41200          | 2.44             |
| 14844          | 93197                   | 91800          | -1.50      | 358        | 300   | -16.26       | 27158      | 28200 | 3.84         | 34         | 39      | 14.00      | 51758          | 51800          | 0.08             |
| 14680          | 92826                   | 90500          | -2.51      | 269        | 300   | 11.65        | 39594      | 41400 | 4.56         | 68         | 5       | -92.69     | 44134          | 41400          | -6.20            |
| 14871          | 98225                   | 96200          | -2.06      | 90         | 120   | 33.98        | 33019      | 34000 | 2.97         | 34         | 10      | -70.77     | 45813          | 46100          | 0.63             |
| 14887          | 93144                   | 96900          | 4.03       | 358        | 340   | -5.10        | 47956      | 51800 | 8.02         | 34         | 20      | -41.54     | 51129          | 53100          | 3.86             |
| 14689          | 83353                   | 83800          | 0.54       | 90         | 120   | 33.98        | 19368      | 21800 | 12.56        | 34         | 10      | -70.77     | 13709          | 14800          | 7.96             |
| 14695          | 95155                   | 97000          | 1.94       | 179        | 170   | -5.10        | 35592      | 39800 | 11.82        | 34         | 6       | -82.46     | 36301          | 39900          | 9.92             |
| 14/42          | 97801                   | 90600          | -7.30      | 179        | 120   | -33.01       | 27444      | 27800 | 1.30         | 34         | 24      | -29.85     | 335/3          | 53500          | -0.22            |
| 14685          | 92330                   | 92100<br>85000 | -0.27      | 330        | 380   | -7.09        | 32000      | 39300 | 3.15         | 34         | 5       | -36.02     | 62300          | 63000          | 4.42             |
| 14685B         | 87746                   | 83100          | -5.29      | 358        | 310   | -13.47       | 29731      | 29500 | -0.78        | 34         | 7       | -79.54     | 66097          | 59700          | -9.68            |
| 14545          | 98330                   | 94700          | -3.69      | 896        | 860   | -3.98        | 37021      | 38200 | 3.18         | 34         | 16      | -53.23     | 41826          | 41700          | -0.30            |
| 14565          | 91186                   | 88300          | -3.16      | 179        | 220   | 22.81        | 43239      | 45800 | 5.92         | 34         | 11      | -67.85     | 36720          | 37200          | 1.31             |
| 14571          | 87217                   | 82200          | -5.75      | 448        | 430   | -3.98        | 25086      | 25900 | 3.25         | 34         | 7       | -79.54     | 27908          | 26900          | -3.61            |
| 14578          | 88804                   | 86800          | -2.26      | 627        | 640   | 2.08         | 39808      | 42000 | 5.51         | 34         | 9       | -73.69     | 39938          | 41600          | 4.16             |
| 14578B         | 86793                   | 82400          | -5.06      | 806        | 760   | -5.72        | 41095      | 43200 | 5.12         | 34         | 10      | -70.77     | 41616          | 39200          | -5.81            |
| 14598          | 101506                  | 92500          | -8.87      | 179        | 220   | 22.81        | 32304      | 33500 | 3.70         | 34         | 3       | -91.23     | 45463          | 46600          | 2.50             |
| 14893          | 92033                   | 92000          | -0.04      | 448        | 490   | 9.42         | 39808      | 41600 | 4.50         | 34         | 44      | 28.62      | 53087          | 53400          | 0.59             |
| 14899          | 96531                   | 97000          | 0.49       | 358        | 330   | -7.89        | 34091      | 35400 | 3.84         | 34         | 43      | 25.69      | 56934          | 56900          | -0.06            |
| 14908          | 92985                   | 95800          | 3.03       | /1/        | 690   | -3.70        | 35663      | 37900 | 6.27         | 34         | 39      | 14.00      | 52388          | 53200          | 1.55             |
| 14917<br>14025 | 88646<br>92509          | 87800          | -3.77      | 806<br>358 | 740   | -ö.20        | 22/2/      | 23200 | ∠.U8<br>4.20 | 34<br>34   | 16      | -53.23     | 23991<br>45953 | 24200<br>46200 | 0.87             |
| 14923          | 92009<br>9 <u>4</u> 414 | 90100          | -3.09      | 000<br>260 | 280   | 0.00<br>4 21 | 34920      | 39800 | 4.29<br>5.07 | 34         | 30<br>6 | -12.31     | 40900          | 40200          | 0.54             |
| 15862          | 92350                   | 87200          | -5.58      | 269        | 290   | 7.93         | 40452      | 42200 | 4 32         | 34         | 4       | -88.31     | 42106          | 41600          | -1 20            |
| 15870          | 80866                   | 81000          | 0.17       | 1075       | 1030  | -4.17        | 43596      | 46400 | 6.43         | 34         | 27      | -21.08     | 38329          | 39200          | 2.27             |
| 15879          | 90180                   | 90600          | 0.47       | 806        | 760   | -5.72        | 45597      | 48300 | 5.93         | 34         | 29      | -15.23     | 51548          | 51500          | -0.09            |
| 15887          | 94414                   | 87200          | -7.64      | 448        | 440   | -1.75        | 40166      | 41200 | 2.57         | 34         | 25      | -26.92     | 37840          | 34600          | -8.56            |
| 15891          | 93303                   | 89500          | -4.08      | 1343       | 1250  | -6.96        | 48313      | 51300 | 6.18         | 34         | 22      | -35.69     | 37979          | 38500          | 1.37             |
| 15908          | 91980                   | 87100          | -5.31      | 269        | 260   | -3.24        | 43525      | 45200 | 3.85         | 34         | 24      | -29.85     | 34412          | 34500          | 0.25             |
|                |                         |                |            |            |       |              |            |       |              |            |         |            |                |                |                  |

## Project: Schaft Creek Client: Copper Fox Metals Inc. Data: QA/QC Data - Comparison on ICP Metals and Whole Rock Analyses Comments: Sampled by MDAG on Feb 7'07. For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample<br>Id.                          | Whole Rock<br>Al *<br>(ppm) | ICP<br>AI<br>(ppm) | Difference<br>(%) <sup>3</sup> | Whole Rock<br>Ba *<br>(ppm) | ICP<br>Ba<br>(ppm) | Difference<br>(%) <sup>3</sup> | Whole Rock<br>Ca *<br>(ppm) | ICP<br>Ca<br>(ppm) | Difference<br>(%) <sup>3</sup> | Whole Rock<br>Cr *<br>(ppm) | ICP<br>Cr<br>(ppm) | Difference<br>(%) <sup>3</sup> | Whole Rock<br>Fe *<br>(ppm) | ICP<br>Fe<br>(ppm) | Difference<br>(%) <sup>3</sup> |
|----------------------------------------|-----------------------------|--------------------|--------------------------------|-----------------------------|--------------------|--------------------------------|-----------------------------|--------------------|--------------------------------|-----------------------------|--------------------|--------------------------------|-----------------------------|--------------------|--------------------------------|
| 15911                                  | 92033                       | 88600              | -3.73                          | 448                         | 410                | -8.45                          | 34877                       | 35200              | 0.93                           | 34                          | 33                 | -3.54                          | 47422                       | 46500              | -1.94                          |
| Maximum                                |                             |                    | 5.69                           |                             |                    | 34                             |                             |                    | 12.6                           |                             |                    | 43.2                           |                             |                    | 9.92                           |
| Minimum                                |                             |                    | -10.6                          |                             |                    | -33                            |                             |                    | -2.64                          |                             |                    | -92.7                          |                             |                    | -9.68                          |
| Mean                                   |                             |                    | -3.63                          |                             |                    | -1.63                          |                             |                    | 3.76                           |                             |                    | -49.3                          |                             |                    | -0.32                          |
| Standard Deviation                     |                             |                    | 3.81                           |                             |                    | 13                             |                             |                    | 2.74                           |                             |                    | 35                             |                             |                    | 3.33                           |
| 10 Percentile                          |                             |                    | -8.4                           |                             |                    | -16.3                          |                             |                    | 0.85                           |                             |                    | -88.3                          |                             |                    | -3.62                          |
| 25 Percentile                          |                             |                    | -6.15                          |                             |                    | -8.04                          |                             |                    | 2.27                           |                             |                    | -81                            |                             |                    | -2.05                          |
| Median                                 |                             |                    | -4.08                          |                             |                    | -4.17                          |                             |                    | 3.72                           |                             |                    | -53.2                          |                             |                    | -0.17                          |
| 75 Percentile                          |                             |                    | -1.08                          |                             |                    | 5.14                           |                             |                    | 5.1                            |                             |                    | -28.4                          |                             |                    | 1.22                           |
| 90 Percentile                          |                             |                    | 0.82                           |                             |                    | 12.8                           |                             |                    | 6.3                            |                             |                    | -2.08                          |                             |                    | 2.88                           |
| Interguartile Range (IQR) <sup>1</sup> |                             |                    | 5.07                           |                             |                    | 13.2                           |                             |                    | 2 82                           |                             |                    | 52.6                           |                             |                    | 3 27                           |
| Variance                               |                             |                    | 14 5                           |                             |                    | 169                            |                             |                    | 7.52                           |                             |                    | 1223                           |                             |                    | 11 1                           |
| Skewness                               |                             |                    | 0.41                           |                             |                    | 0.66                           |                             |                    | 0.57                           |                             |                    | 0.76                           |                             |                    | 0.066                          |
| Coefficient of Variation $(Co)/h^2$    |                             |                    | 1.05                           |                             |                    | 7.00                           |                             |                    | 0.37                           |                             |                    | 0.70                           |                             |                    | 0.000                          |
| Coefficient of variation (CoV)         |                             |                    | -1.05                          |                             |                    | -7.96                          |                             |                    | 0.73                           |                             |                    | -0.71                          |                             |                    | -10.3                          |
| Count                                  |                             |                    | 59                             |                             |                    | 59                             |                             |                    | 59                             |                             |                    | 59                             |                             |                    | 59                             |

<sup>1</sup> Interquartile Range (IQR) =  $75^{th}$  percentile minus  $25^{th}$  percentile

<sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean

<sup>3</sup> Difference (%) = (ICP - Whole Rock) \* 100 / Whole Rock

\* Element calculated from Whole Rock XRF analysis

AI (Whole Rock) =  $(AI_2O_3^*2^*10000^*26.98)/(2^*26.98+3^*16)$ 

Ba (Whole Rock) = (BaO\*10000\*137.34)/(137.34+16)

Ca (Whole Rock) = (CaO\*10000\*40.08)/(40.08+16)

Cr (Whole Rock) =  $(Cr_2O_3^*2^*10000^*52.00)/(2^*52.00+3^*16)$ 

Fe (Whole Rock) =  $(Fe_2O_3^2*10000^55.85)/(2^55.85+3^{16})$ 

| Sample         | Whole Rock | ICP   |               | Whole Rock | ICP   |            | Whole Rock | ICP        |            | Whole Rock | ICP   |            | Whole Rock | ICP   |            |
|----------------|------------|-------|---------------|------------|-------|------------|------------|------------|------------|------------|-------|------------|------------|-------|------------|
| ld.            | K *        | K     | Difference    | Mg *       | Mg    | Difference | Mn *       | Mn         | Difference | Na *       | Na    | Difference | P *        | Р     | Difference |
|                | (ppm)      | (ppm) | (%) 3         | (ppm)      | (ppm) | (%) 3      | (ppm)      | (ppm)      | (%) 3      | (ppm)      | (ppm) | (%) 3      | (ppm)      | (ppm) | (%) 3      |
| 14018          | 24239      | 24500 | 1.08          | 10494      | 10700 | 1.97       | 387        | 476        | 22.92      | 29748      | 31600 | 6.22       | 611        | 660   | 8.03       |
| 14021          | 21500      | 22200 | 3.26          | 8865       | 9200  | 3.78       | 542        | 629        | 16.03      | 21959      | 23800 | 8.38       | 524        | 570   | 8.85       |
| 14036          | 20836      | 21300 | 2.23          | 9106       | 9100  | -0.07      | 387        | 475        | 22.67      | 23220      | 24700 | 6.37       | 524        | 570   | 8.85       |
| 14043          | 9795       | 10300 | 5.15          | 18454      | 19000 | 2.96       | 387        | 446        | 15.18      | 30638      | 32900 | 7.38       | 524        | 570   | 8.85       |
| 14060          | 11788      | 12000 | 1.80          | 19781      | 21000 | 6.16       | 387        | 422        | 8.98       | 27523      | 30500 | 10.82      | 1135       | 1290  | 13.70      |
| 14067          | 10708      | 11200 | 4.59          | 24545      | 26800 | 9.19       | 697        | 779        | 11.76      | 30787      | 35100 | 14.01      | 960        | 1120  | 16.66      |
| 14076          | 13116      | 14300 | 9.03          | 22434      | 25000 | 11.44      | 1471       | 1585       | 7.72       | 19585      | 23000 | 17.44      | 916        | 1070  | 16.76      |
| 14083          | 28971      | 30900 | 6.66          | 17007      | 17700 | 4.08       | 1317       | 1365       | 3.68       | 12018      | 13600 | 13.16      | 916        | 1070  | 16.76      |
| 14099          | 32706      | 32000 | -2.16         | 8865       | 8200  | -7.50      | 1084       | 1090       | 0.53       | 5416       | 5400  | -0.29      | 480        | 470   | -2.09      |
| 14103          | 17183      | 18100 | 5.33          | 12303      | 12900 | 4.85       | 620        | 686        | 10.72      | 22181      | 25100 | 13.16      | 567        | 620   | 9.29       |
| 14130          | 17515      | 18100 | 3.34          | 9710       | 10200 | 5.05       | 155        | 191        | 23.31      | 34199      | 38300 | 11.99      | 1222       | 1390  | 13.76      |
| 14144          | 15274      | 15600 | 2.13          | 10916      | 11600 | 0.27       | 387        | 451        | 16.47      | 30045      | 34900 | 10.10      | 15/1       | 1830  | 16.49      |
| 14146          | 20070      | 20600 | -0.34         | 7207       | 7000  | 0.13       | 301        | 429        | 10.79      | 12700      | 27400 | 0.10       | 1135       | 500   | 1.55       |
| 14150          | 1/1850     | 12200 | 4.23          | 23042      | 26200 | 0.20       | 232        | 339<br>853 | 40.91      | 16840      | 10300 | 11.29      | 430        | 080   | 14.00      |
| 14169          | 8882       | 9700  | 9.21          | 3679       | 4000  | 8 73       | 232        | 278        | 19.65      | 42731      | 47600 | 11.40      | 524        | 550   | 5.03       |
| 14232          | 16685      | 16800 | 0.69          | 8926       | 9100  | 1.95       | 155        | 189        | 22.02      | 39392      | 42800 | 8 65       | 1309       | 1430  | 9.23       |
| 14250          | 13863      | 14600 | 5.32          | 17308      | 18800 | 8.62       | 387        | 436        | 12.59      | 33235      | 38300 | 15.24      | 1222       | 1450  | 18.67      |
| 14260          | 15772      | 15900 | 0.81          | 13328      | 13900 | 4.29       | 232        | 275        | 18.36      | 35386      | 38600 | 9.08       | 1222       | 1390  | 13.76      |
| 14276          | 7139       | 7600  | 6.46          | 15439      | 16400 | 6.23       | 1084       | 1085       | 0.07       | 36870      | 40800 | 10.66      | 1266       | 1440  | 13.79      |
| 14295          | 15191      | 16000 | 5.33          | 14655      | 15500 | 5.77       | 387        | 436        | 12.59      | 29674      | 33600 | 13.23      | 1178       | 1360  | 15.43      |
| 14301          | 19425      | 19200 | -1.16         | 12062      | 12400 | 2.81       | 465        | 517        | 11.26      | 24704      | 27300 | 10.51      | 1222       | 1380  | 12.94      |
| 14323          | 17432      | 18200 | 4.40          | 9348       | 9600  | 2.70       | 310        | 386        | 24.60      | 30935      | 35000 | 13.14      | 1222       | 1410  | 15.40      |
| 14332          | 20421      | 20200 | -1.08         | 10313      | 10400 | 0.85       | 232        | 281        | 20.94      | 29897      | 32400 | 8.37       | 1309       | 1470  | 12.29      |
| 14345          | 22662      | 24000 | 5.90          | 9890       | 10300 | 4.14       | 77         | 150        | 93.68      | 33161      | 36900 | 11.28      | 1222       | 1380  | 12.94      |
| 14348          | 18678      | 18700 | 0.12          | 11881      | 12100 | 1.85       | 155        | 191        | 23.31      | 35535      | 38200 | 7.50       | 1353       | 1520  | 12.36      |
| 14797          | 18927      | 19500 | 3.03          | 14836      | 15200 | 2.46       | 465        | 559        | 20.30      | 23888      | 26700 | 11.77      | 1178       | 1330  | 12.88      |
| 14808          | 20670      | 20800 | 0.63          | 15801      | 16300 | 3.16       | 465        | 493        | 6.10       | 18546      | 20000 | 7.84       | 1004       | 1080  | 7.60       |
| 14816          | 20753      | 20900 | 0.71          | 16766      | 17000 | 1.40       | 387        | 438        | 13.11      | 24110      | 26700 | 10.74      | 1135       | 1230  | 8.41       |
| 14828          | 16104      | 17500 | 8.67          | 16464      | 18200 | 10.54      | 465        | 507        | 9.11       | 28265      | 32900 | 16.40      | 1091       | 1280  | 17.33      |
| 14844          | 16436      | 16900 | 2.82          | 35823      | 37900 | 5.80       | 232        | 319        | 37.30      | 21662      | 24600 | 13.56      | 1135       | 1290  | 13.70      |
| 14680          | 15025      | 16000 | 6.49          | 15077      | 16500 | 9.44       | 465        | 493        | 6.10       | 30045      | 34600 | 15.16      | 1135       | 1300  | 14.58      |
| 14871          | 11290      | 12300 | 8.95          | 17308      | 19200 | 10.93      | 310        | 3/4        | 20.73      | 38280      | 44300 | 15.73      | 1047       | 1230  | 17.44      |
| 14607          | 10293      | 16400 | 13.07         | 21//1      | 24700 | 13.45      | 242        | 201        | 13.07      | 30045      | 33400 | 6.52       | 1004       | 540   | 19.50      |
| 14009          | 21224      | 22100 | 3.44          | 1466       | 15100 | 2.04       | 542        | 611        | 12 71      | 26484      | 34300 | 13 28      | 400        | 1/00  | 23.30      |
| 14742          | 12369      | 12800 | 3.00          | 20444      | 22400 | 9.57       | 310        | 401        | 29.45      | 38651      | 43600 | 12.81      | 1091       | 1220  | 11.83      |
| 14666          | 12701      | 12900 | 1.57          | 21650      | 22000 | 1.61       | 465        | 543        | 16.86      | 32864      | 35800 | 8.93       | 1091       | 1250  | 14.58      |
| 14685          | 12203      | 12100 | -0.84         | 27199      | 27300 | 0.37       | 310        | 364        | 17.50      | 29897      | 32000 | 7 04       | 1353       | 1530  | 13 10      |
| 14685B         | 12784      | 13200 | 3.26          | 26354      | 28400 | 7.76       | 310        | 327        | 5.56       | 29526      | 33900 | 14.82      | 1309       | 1530  | 16.87      |
| 14545          | 11373      | 11800 | 3.76          | 13087      | 14000 | 6.98       | 232        | 273        | 17.50      | 31158      | 35000 | 12.33      | 1178       | 1330  | 12.88      |
| 14565          | 17764      | 18600 | 4.70          | 11398      | 12100 | 6.16       | 465        | 529        | 13.84      | 26484      | 29900 | 12.90      | 1135       | 1270  | 11.93      |
| 14571          | 14610      | 14200 | -2.81         | 12242      | 11700 | -4.43      | 155        | 230        | 48.49      | 32048      | 32200 | 0.47       | 960        | 1030  | 7.29       |
| 14578          | 15689      | 15800 | 0.71          | 12001      | 11800 | -1.68      | 310        | 337        | 8.79       | 29674      | 31500 | 6.15       | 1353       | 1550  | 14.58      |
| 14578B         | 15274      | 15800 | 3.44          | 11881      | 12700 | 6.90       | 310        | 345        | 11.37      | 29006      | 32900 | 13.42      | 1309       | 1470  | 12.29      |
| 14598          | 12784      | 12400 | -3.00         | 22857      | 22100 | -3.31      | 542        | 631        | 16.39      | 29303      | 31400 | 7.16       | 1353       | 1540  | 13.84      |
| 14893          | 9214       | 10200 | 10.70         | 24545      | 27200 | 10.82      | 465        | 493        | 6.10       | 31380      | 36600 | 16.63      | 1091       | 1260  | 15.50      |
| 14899          | 7471       | 7700  | 3.07          | 37994      | 41300 | 8.70       | 465        | 546        | 17.50      | 29229      | 34100 | 16.67      | 1091       | 1260  | 15.50      |
| 14908          | 12535      | 13700 | 9.30          | 21470      | 24000 | 11.79      | 465        | 527        | 13.41      | 37760      | 44700 | 18.38      | 1135       | 1310  | 15.46      |
| 14917          | 15440      | 16100 | 4.27          | 16524      | 18300 | 10.75      | 310        | 379        | 22.34      | 41692      | 47300 | 13.45      | 960        | 1100  | 14.58      |
| 14925          | 14942      | 15400 | 3.07          | 18756      | 20400 | 8.77       | 387        | 408        | 5.36       | 30861      | 35600 | 15.36      | 1091       | 1230  | 12.75      |
| 14998          | 11539      | 12500 | 8.33          | 14896      | 16300 | 9.43       | 387        | 452        | 16.73      | 35683      | 41400 | 16.02      | 1222       | 1440  | 17.85      |
| 15002          | 14361      | 14800 | 3.06          | 16524      | 17400 | 5.30       | 542        | 584        | 1.73       | 30564      | 34400 | 12.55      | 1135       | 1260  | 11.05      |
| 15070          | 1/349      | 14000 | 0.03          | 17407      | 10000 | 9.51       | 400        | 539<br>554 | 10.00      | 22/15      | 20200 | 15.04      | 1004       | 120   | 11.59      |
| 13079<br>15887 | 14029      | 14900 | 0.21<br>2.40  | 1/12/      | 10000 | 9.77       | 400        | 204<br>205 | 19.22      | 20200      | 32900 | 10.40      | 1091       | 1280  | 17.33      |
| 15801          | 16510      | 17200 | 2.40<br>1 1 2 | 14030      | 17200 | 7.17       | 165        | 550        | 20.08      | 30561      | 34000 | 14.17      | 1004       | 1120  | 13.34      |
| 15001          | 17340      | 18000 | 3.75          | 17248      | 18500 | 7.04       | 387        | 433        | 20.00      | 25520      | 20000 | 13.64      | 1004       | 1120  | 12.59      |
| 10000          | 11040      | 10000 | 0.10          | 17240      | 10000 | 1.20       | 307        | -55        | 11.02      | 20020      | 20000 | 10.04      | 1004       | 1130  | 12.00      |

## Project: Schaft Creek Client: Copper Fox Metals Inc. Data: QA/QC Data - Comparison on ICP Metals and Whole Rock Analyses Comments: Sampled by MDAG on Feb 7'07. For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample<br>Id.                          | Whole Rock<br>K *<br>(ppm) | ICP<br>K<br>(ppm) | Difference<br>(%) <sup>3</sup> | Whole Rock<br>Mg *<br>(ppm) | ICP<br>Mg<br>(ppm) | Difference<br>(%) <sup>3</sup> | Whole Rock<br>Mn *<br>(ppm) | ICP<br>Mn<br>(ppm) | Difference<br>(%) <sup>3</sup> | Whole Rock<br>Na *<br>(ppm) | ICP<br>Na<br>(ppm) | Difference<br>(%) <sup>3</sup> | Whole Rock<br>P *<br>(ppm) | ICP<br>P<br>(ppm) | Difference<br>(%) <sup>3</sup> |
|----------------------------------------|----------------------------|-------------------|--------------------------------|-----------------------------|--------------------|--------------------------------|-----------------------------|--------------------|--------------------------------|-----------------------------|--------------------|--------------------------------|----------------------------|-------------------|--------------------------------|
| 15911                                  | 13448                      | 13800             | 2.62                           | 21349                       | 23100              | 8.20                           | 387                         | 402                | 3.81                           | 28858                       | 32500              | 12.62                          | 1091                       | 1250              | 14.58                          |
| Maximum                                |                            |                   | 13.7                           |                             |                    | 13.5                           |                             |                    | 93.7                           |                             |                    | 18.4                           |                            |                   | 23.4                           |
| Minimum                                |                            |                   | -3                             |                             |                    | -7.5                           |                             |                    | 0.07                           |                             |                    | -0.29                          |                            |                   | -2.09                          |
| Mean                                   |                            |                   | 3.79                           |                             |                    | 5.46                           |                             |                    | 17.4                           |                             |                    | 11.8                           |                            |                   | 13.1                           |
| Standard Deviation                     |                            |                   | 3.41                           |                             |                    | 4.3                            |                             |                    | 13.8                           |                             |                    | 3.98                           |                            |                   | 3.94                           |
| 10 Percentile                          |                            |                   | -0.44                          |                             |                    | 0.32                           |                             |                    | 5.99                           |                             |                    | 6.94                           |                            |                   | 8.33                           |
| 25 Percentile                          |                            |                   | 1.69                           |                             |                    | 2.58                           |                             |                    | 10.4                           |                             |                    | 8.79                           |                            |                   | 11.7                           |
| Median                                 |                            |                   | 3.44                           |                             |                    | 6.16                           |                             |                    | 16                             |                             |                    | 12.8                           |                            |                   | 13.5                           |
| 75 Percentile                          |                            |                   | 5.62                           |                             |                    | 8.75                           |                             |                    | 20.8                           |                             |                    | 14.7                           |                            |                   | 15.4                           |
| 90 Percentile                          |                            |                   | 8.72                           |                             |                    | 10.6                           |                             |                    | 27.9                           |                             |                    | 16.4                           |                            |                   | 17.3                           |
| Interguartile Range (IOR) <sup>1</sup> |                            |                   | 3 93                           |                             |                    | 6 17                           |                             |                    | 10.4                           |                             |                    | 5 92                           |                            |                   | 3 73                           |
| Variance                               |                            |                   | 11.6                           |                             |                    | 18.5                           |                             |                    | 192                            |                             |                    | 15.8                           |                            |                   | 15.6                           |
| Skewness                               |                            |                   | 0.37                           |                             |                    | -0.65                          |                             |                    | 3.24                           |                             |                    | -0.85                          |                            |                   | -0.86                          |
| Coefficient of Variation $(Co)/h^2$    |                            |                   | 0.01                           |                             |                    | 0.00                           |                             |                    | 0.24                           |                             |                    | 0.00                           |                            |                   | 0.00                           |
| Coefficient of variation (Cov)         |                            |                   | 0.9                            |                             |                    | 0.79                           |                             |                    | 0.8                            |                             |                    | 0.34                           |                            |                   | 0.3                            |
| Count                                  |                            |                   | 59                             |                             |                    | 59                             |                             |                    | 59                             |                             |                    | 59                             |                            |                   | 59                             |

<sup>1</sup> Interquartile Range (IQR) =  $75^{th}$  percentile minus  $25^{th}$  percentile

<sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean

<sup>3</sup> Difference (%) = (ICP - Whole Rock) \* 100 / Whole Rock

\* Element calculated from Whole Rock XRF analysis

K (Whole Rock) =  $(K_2O^2*10000*39.09)/(39.09*2+16)$ 

Mg (Whole Rock) =  $(MgO^{10000^{2}24.31})/(24.31+16)$ 

Mn (Whole Rock) = (MnO\*10000\*54.94)/(54.94+16)

Na (Whole Rock) =  $(Na_2O^2*10000^222.99)/(22.99^2+16)$ 

P (Whole Rock) =  $(P_2O5^*2^*10000^*30.97)/(2^*30.97+5^*16)$ 

| Sample          | Whole Rock | ICP   |            | Whole Rock | ICP   |            | Leco        | ICP   |            | Whole Rock | ICP   |                  |
|-----------------|------------|-------|------------|------------|-------|------------|-------------|-------|------------|------------|-------|------------------|
| ld.             | Si *       | Si    | Difference | Sr *       | Sr    | Difference | S (Total)** | S     | Difference | Ti *       | Ti    | Difference       |
|                 | (ppm)      | (ppm) | (%) 3      | (ppm)      | (ppm) | (%) 3      | (ppm)       | (ppm) | (%) 3      | (ppm)      | (ppm) | (%) <sup>3</sup> |
| 14018           | 294129     |       |            | 423        | 428   | 1 23       | 8000        | 8800  | 10.00      | 2518       | 2400  | -4 68            |
| 14021           | 303993     |       |            | 169        | 173   | 2.30       | 6200        | 7000  | 12.90      | 2158       | 2080  | -3.62            |
| 14036           | 303338     |       |            | 254        | 235   | -7.36      | 14700       | 16000 | 8.84       | 2278       | 1970  | -13.52           |
| 14043           | 302637     |       |            | 254        | 276   | 8.80       | 2600        | 2800  | 7.69       | 2458       | 2190  | -10.90           |
| 14060           | 271971     |       |            | 423        | 423   | 0.05       | 13100       | 14800 | 12.98      | 4376       | 4100  | -6.31            |
| 14067           | 269681     |       |            | 338        | 410   | 21.22      | 4000        | 4300  | 7.50       | 4196       | 4170  | -0.63            |
| 14076           | 259724     |       |            | 338        | 365   | 7.91       | 7700        | 9500  | 23.38      | 4316       | 4540  | 5.18             |
| 14083           | 249346     |       |            | 169        | 232   | 37.18      | 14600       | 16000 | 9.59       | 4436       | 4480  | 0.99             |
| 14099           | 297822     |       |            | 85         | 88    | 4.07       | 3400        | 3600  | 5.88       | 1858       | 1670  | -10.14           |
| 14103           | 287725     |       |            | 169        | 198   | 16.78      | 6900        | 7700  | 11.59      | 2458       | 2220  | -9.68            |
| 14130           | 281180     |       |            | 254        | 288   | 13.53      | 2900        | 3200  | 10.34      | 3177       | 2800  | -11.88           |
| 14144           | 251496     |       |            | 338        | 343   | 1.41       | 2600        | 2800  | 7.69       | 3777       | 3760  | -0.45            |
| 14148           | 243082     |       |            | 254        | 223   | -12.09     | 1400        | 1400  | 0.00       | 3837       | 3780  | -1.48            |
| 14156           | 303666     |       |            | 254        | 259   | 2.10       | 1700        | 1700  | 0.00       | 1739       | 1900  | 9.29             |
| 14162           | 234714     |       |            | 169        | 239   | 41.32      | 1300        | 1500  | 15.38      | 4137       | 4270  | 3.23             |
| 14169           | 312781     |       |            | 169        | 207   | 22.40      | 3000        | 3200  | 6.67       | 1858       | 1960  | 5.46             |
| 14232           | 264352     |       |            | 338        | 345   | 2.00       | 1500        | 1600  | 6.67       | 3657       | 3290  | -10.03           |
| 14250           | 242661     |       |            | 338        | 424   | 25.36      | 1900        | 2000  | 5.26       | 4496       | 4350  | -3.25            |
| 14260           | 255330     |       |            | 338        | 402   | 18.85      | 3400        | 3700  | 8.82       | 4316       | 4050  | -6.17            |
| 14276           | 252759     |       |            | 676        | 798   | 17.97      | 1700        | 1700  | 0.00       | 4017       | 4100  | 2.08             |
| 14295           | 250234     |       |            | 254        | 336   | 32.45      | 4400        | 4900  | 11.36      | 4376       | 4240  | -3.12            |
| 14301           | 256452     |       |            | 169        | 209   | 23.58      | 3400        | 3500  | 2.94       | 4196       | 3620  | -13.74           |
| 14323           | 255470     |       |            | 338        | 391   | 15.60      | 1500        | 1500  | 0.00       | 3357       | 3310  | -1.41            |
| 14332           | 253179     |       |            | 338        | 355   | 4.96       | 2600        | 2700  | 3.85       | 3597       | 3260  | -9.37            |
| 14345           | 268793     |       |            | 254        | 274   | 8.01       | 5200        | 5600  | 7.69       | 3477       | 2970  | -14.58           |
| 14348           | 256966     |       |            | 254        | 276   | 8.80       | 4400        | 4800  | 9.09       | 3657       | 3190  | -12.77           |
| 14797           | 241867     |       |            | 254        | 234   | -7.76      | 800         | 700   | -12.50     | 4196       | 4150  | -1.11            |
| 14808           | 245980     |       |            | 169        | 221   | 30.68      | 1800        | 1900  | 5.56       | 3357       | 3260  | -2.90            |
| 14816           | 249346     |       |            | 254        | 285   | 12.35      | 4600        | 4700  | 2.17       | 3897       | 3810  | -2.23            |
| 14828           | 242474     |       |            | 338        | 404   | 19.44      | 1300        | 1400  | 7.69       | 3777       | 3940  | 4.32             |
| 14844           | 246775     |       |            | 254        | 265   | 4.46       | 2100        | 2200  | 4.76       | 5575       | 5590  | 0.26             |
| 14680           | 249346     |       |            | 338        | 348   | 2.89       | 2200        | 2200  | 0.00       | 4017       | 4040  | 0.58             |
| 14871           | 250234     |       |            | 338        | 405   | 19.74      | 3700        | 3800  | 2.70       | 4916       | 4990  | 1.51             |
| 14887           | 236351     |       |            | 338        | 424   | 25.36      | 4400        | 5400  | 22.73      | 4736       | 4960  | 4.73             |
| 14689           | 309696     |       |            | 169        | 141   | -16.63     | 6800        | 7900  | 16.18      | 1978       | 1580  | -20.14           |
| 14695           | 249533     |       |            | 169        | 226   | 33.63      | 1400        | 1600  | 14.29      | 4077       | 4310  | 5.73             |
| 14/42           | 256498     |       |            | 254        | 302   | 19.05      | 1900        | 2100  | 10.53      | 5156       | 4690  | -9.03            |
| 14000           | 248738     |       |            | 338        | 416   | 22.99      | 3200        | 3800  | 18.75      | 5036       | 5070  | 0.68             |
| 14085<br>14685D | 233125     |       |            | 338        | 393   | 10.19      | 17900       | 21000 | 17.32      | 8273       | 7690  | -7.05            |
| 14003D<br>14545 | 233003     |       |            | 330        | 374   | 10.57      | 19500       | 20400 | 4.62       | 02/3       | 7930  | -4.15            |
| 14545           | 202990     |       |            | 330        | 409   | 20.92      | 1900        | 1900  | 12.04      | 3097       | 3900  | 2.14             |
| 14505           | 280246     |       |            | 234        | 200   | -7.76      | 10400       | 11100 | 6.73       | 3537       | 3170  | -10.38           |
| 14578           | 252478     |       |            | 254        | 324   | 27.72      | 18200       | 21300 | 17.03      | 5156       | 4630  | -10.00           |
| 14578B          | 254628     |       |            | 254        | 330   | 30.09      | 19300       | 21100 | 9.33       | 4916       | 4430  | -9.88            |
| 14598           | 247476     |       |            | 507        | 569   | 12 15      | 1300        | 1500  | 15 38      | 4436       | 4330  | -2 40            |
| 14893           | 235696     |       |            | 338        | 379   | 12.10      | 1100        | 1100  | 0.00       | 5995       | 6030  | 0.58             |
| 14899           | 228824     |       |            | 338        | 366   | 8 21       | 200         | 200   | 0.00       | 5815       | 5850  | 0.60             |
| 14908           | 247383     |       |            | 423        | 479   | 13.29      | 800         | 900   | 12.50      | 5815       | 5910  | 1.63             |
| 14917           | 278656     |       |            | 254        | 309   | 21.81      | 1900        | 1900  | 0.00       | 4796       | 4580  | -4.50            |
| 14925           | 253647     |       |            | 338        | 353   | 4.37       | 1400        | 1500  | 7.14       | 5276       | 5090  | -3.52            |
| 14998           | 251309     |       |            | 338        | 412   | 21.81      | 1300        | 1300  | 0.00       | 4316       | 4460  | 3.33             |
| 15862           | 247149     |       |            | 254        | 327   | 28.90      | 800         | 800   | 0.00       | 4077       | 4050  | -0.65            |
| 15870           | 254348     |       |            | 254        | 234   | -7.76      | 1300        | 1400  | 7.69       | 4436       | 4460  | 0.53             |
| 15879           | 237098     |       |            | 338        | 373   | 10.28      | 1200        | 1200  | 0.00       | 5395       | 5450  | 1.01             |
| 15887           | 254441     |       |            | 338        | 402   | 18.85      | 3100        | 3300  | 6.45       | 5156       | 5100  | -1.08            |
| 15891           | 240184     |       |            | 338        | 382   | 12.94      | 1400        | 1400  | 0.00       | 5156       | 4920  | -4.57            |
| 15908           | 250001     |       |            | 254        | 288   | 13.53      | 2200        | 2200  | 0.00       | 4856       | 4740  | -2.39            |

# Project: Schaft Creek Client: Copper Fox Metals Inc. Data: QA/QC Data - Comparison on ICP Metals and Whole Rock Analyses Comments: Sampled by MDAG on Feb 7'07. For drillhole 05CF240, changed northing from 6359873 to 6358873 to reflect drillhole location on provided maps.

| Sample<br>Id.                               | Whole Rock<br>Si * | ICP<br>Si | Difference | Whole Rock<br>Sr * | ICP<br>Sr | Difference | Leco<br>S (Total)** | ICP<br>S | Difference | Whole Rock<br>Ti * | ICP<br>Ti | Difference |
|---------------------------------------------|--------------------|-----------|------------|--------------------|-----------|------------|---------------------|----------|------------|--------------------|-----------|------------|
|                                             | (ppm)              | (ppm)     | (%) °      | (ppm)              | (ppm)     | (%) °      | (ppm)               | (ppm)    | (%) °      | (ppm)              | (ppm)     | (%) 5      |
| 15911                                       | 246822             |           |            | 338                | 335       | -0.96      | 900                 | 900      | 0.00       | 5455               | 5430      | -0.47      |
| Maximum                                     |                    |           | NA         |                    |           | 41.3       |                     |          | 23.4       |                    |           | 9.29       |
| Minimum                                     |                    |           | NA         |                    |           | -16.6      |                     |          | -12.5      |                    |           | -20.1      |
| Mean                                        |                    |           | NA         |                    |           | 12.8       |                     |          | 7.05       |                    |           | -3.22      |
| Standard Deviation                          |                    |           | NA         |                    |           | 12.6       |                     |          | 6.66       |                    |           | 6.05       |
| 10 Percentile                               |                    |           | NA         |                    |           | -2.24      |                     |          | 0          |                    |           | -11.1      |
| 25 Percentile                               |                    |           | NA         |                    |           | 3.48       |                     |          | 0          |                    |           | -8.04      |
| Median                                      |                    |           | NA         |                    |           | 12.9       |                     |          | 7.14       |                    |           | -2.23      |
| 75 Percentile                               |                    |           | NA         |                    |           | 21.5       |                     |          | 10.9       |                    |           | 0.65       |
| 90 Percentile                               |                    |           | NA         |                    |           | 29.1       |                     |          | 15.5       |                    |           | 3.53       |
| Interguartile Range (IQR) <sup>1</sup>      |                    |           | NA         |                    |           | 18         |                     |          | 10.9       |                    |           | 8.69       |
| Variance                                    |                    |           | NA         |                    |           | 159        |                     |          | 44.4       |                    |           | 36.6       |
| Skewness                                    |                    |           | NA         |                    |           | -0.061     |                     |          | 0.13       |                    |           | -0.52      |
| Coefficient of Variation (CoV) <sup>2</sup> |                    |           | NA         |                    |           | 0.99       |                     |          | 0.94       |                    |           | -1.88      |
| Count                                       |                    |           | 0          |                    |           | 59         |                     |          | 59         |                    |           | 59         |

<sup>1</sup> Interquartile Range (IQR) =  $75^{th}$  percentile minus  $25^{th}$  percentile

<sup>2</sup> Coefficient of Variation (CoV) = standard deviation divided by mean

<sup>3</sup> Difference (%) = (ICP - Whole Rock) \* 100 / Whole Rock

\* Element calculated from Whole Rock XRF analysis

Si (Whole Rock) =  $(SiO_2*10000*28.09)/(28.09+2*16)$ 

Sr (Whole Rock) = (SrO\*10000\*87.62)/(87.62+16)

Ti (Whole Rock) =  $(TiO_2*10000*47.9)/(47.9+2*16)$ 

\*\*S (Total) = S (Leco %) \* 10000

Schaft Creek Copper Fox Metals Inc. QA/QC Data - Sulphur and NP Species Sampled by MDAG on Feb 7'07.

Project:

Client: Data: Comments:

|        |                 |               |        |              | %S(Sulphide)    |               |              | %S(Sulphide)    |               |                |                 |               |               |
|--------|-----------------|---------------|--------|--------------|-----------------|---------------|--------------|-----------------|---------------|----------------|-----------------|---------------|---------------|
|        |                 |               |        |              | Calculated from |               |              | Calculated from |               | (% Leco/Calc)/ | Carbonate Leach | HCI Leachable | 0/5-00-0/     |
| Sample | Carbonate Leach | HCI Leachable | חחח    | C (Culphida) | Carbonate Leach | חחח           | C (Culphida) | HCI Leachable   | חחח           | S (Sulphide)/  | S (Sulphate)/   | S (Sulphate)/ | S(BaSO4)/     |
| Id.    | S (Sulphate)    | S (Sulphate)  | RPD    | S (Sulphide) | S (Sulphate)    | RPD           | S (Sulphide) | S (Sulphate)    | RPD           | S (10tal)*100  | S (10tal)~100   | S (10tal)~100 | S (10tal)*100 |
|        | (%)             | (%)           | (%)    | (% Leco)     | (%)             | (%)           | (% Leco)     | (%)             | (%)           | (%)            | (%)             | (%)           | (%)           |
| 14018  | 0.02            | 0.005         | 120.00 | 0.69         | 0.78            | 12.24         | 0.69         | 0.795           | 14.14         | 86.25          | 2.50            | 0.63          | 3.40          |
| 14021  | 0.03            | 0.005         | 142.86 | 0.6          | 0.59            | 1.68          | 0.6          | 0.615           | 2.47          | 96.77          | 4.84            | 0.81          | 1.69          |
| 14036  | 0.02            | 0.005         | 120.00 | 1.39         | 1.45            | 4.23          | 1.39         | 1.465           | 5.25          | 94.56          | 1.36            | 0.34          | 0.85          |
| 14043  | 0.02            | 0.005         | 120.00 | 0.22         | 0.24            | 8.70          | 0.22         | 0.255           | 14.74         | 84.62          | 7.69            | 1.92          | 2.41          |
| 14060  | 0.74            | 0.71          | 4.14   | 0.62         | 0.57            | 8.40          | 0.62         | 0.6             | 3.28          | 47.33          | 56.49           | 54.20         | 0.64          |
| 14087  | 0.01            | 0.005         | 66 67  | 0.41         | 0.39            | 0.00          | 0.76         | 0.395           | 0.66          | 98.70          | 2.30            | 0.65          | 2.09          |
| 14083  | 0.03            | 0.005         | 142.86 | 1.35         | 1.43            | 5.76          | 1.35         | 1.455           | 7.49          | 92.47          | 2.05            | 0.34          | 1.15          |
| 14099  | 0.03            | 0.005         | 142.86 | 0.28         | 0.31            | 10.17         | 0.28         | 0.335           | 17.89         | 82.35          | 8.82            | 1.47          | 6.15          |
| 14103  | 0.45            | 0.42          | 6.90   | 0.25         | 0.24            | 4.08          | 0.25         | 0.27            | 7.69          | 36.23          | 65.22           | 60.87         | 0.91          |
| 14130  | 0.03            | 0.005         | 142.86 | 0.29         | 0.26            | 10.91         | 0.29         | 0.285           | 1.74          | 100.00         | 10.34           | 1.72          | 4.33          |
| 14144  | 0.02            | 0.005         | 120.00 | 0.2          | 0.24            | 18.18         | 0.2          | 0.255           | 24.18         | 76.92          | 7.69            | 1.92          | 3.22          |
| 14146  | 0.02            | 0.005         | 120.00 | 0.04         | 0.12            | 7 /1          | 0.04         | 0.135           | 16 30         | 20.37          | 14.29           | 3.57          | 3.60          |
| 14162  | 0.04            | 0.005         | 120.00 | 0.12         | 0.13            | 8.70          | 0.12         | 0.125           | 4.08          | 92.31          | 15.38           | 3.85          | 9.65          |
| 14169  | 0.01            | 0.005         | 66.67  | 0.29         | 0.29            | 0.00          | 0.29         | 0.295           | 1.71          | 96.67          | 3.33            | 1.67          | 0.70          |
| 14232  | 0.005           | 0.005         | 0.00   | 0.14         | 0.145           | 3.51          | 0.14         | 0.145           | 3.51          | 93.33          | 3.33            | 3.33          | 2.79          |
| 14250  | 0.01            | 0.005         | 66.67  | 0.19         | 0.18            | 5.41          | 0.19         | 0.185           | 2.67          | 100.00         | 5.26            | 2.63          | 2.20          |
| 14260  | 0.01            | 0.005         | 66.67  | 0.34         | 0.33            | 2.99          | 0.34         | 0.335           | 1.48          | 100.00         | 2.94            | 1.47          | 1.23          |
| 14276  | 0.01            | 0.005         | 66.67  | 0.14         | 0.16            | 13.33         | 0.14         | 0.165           | 16.39         | 82.35          | 5.88            | 2.94          | 14.76         |
| 14295  | 0.005           | 0.005         | 66 67  | 0.41         | 0.435           | 3.08          | 0.41         | 0.435           | 0.92<br>4.58  | 93.10          | 2.04            | 1.14          | 0.40          |
| 14323  | 0.005           | 0.005         | 0.00   | 0.13         | 0.145           | 10.91         | 0.13         | 0.145           | 10.91         | 86.67          | 3.33            | 3.33          | 4.18          |
| 14332  | 0.01            | 0.005         | 66.67  | 0.26         | 0.25            | 3.92          | 0.26         | 0.255           | 1.94          | 100.00         | 3.85            | 1.92          | 1.61          |
| 14345  | 0.005           | 0.005         | 0.00   | 0.52         | 0.515           | 0.97          | 0.52         | 0.515           | 0.97          | 100.00         | 0.96            | 0.96          | 0.80          |
| 14348  | 0.01            | 0.005         | 66.67  | 0.45         | 0.43            | 4.55          | 0.45         | 0.435           | 3.39          | 102.27         | 2.27            | 1.14          | 0.95          |
| 14797  | 0.005           | 0.005         | 0.00   | 0.05         | 0.075           | 40.00         | 0.05         | 0.075           | 40.00         | 62.50          | 6.25            | 6.25          | 5.23          |
| 14808  | 0.005           | 0.005         | 0.00   | 0.16         | 0.175           | 8.96          | 0.16         | 0.175           | 8.96          | 88.89          | 2.78            | 2.78          | 2.32          |
| 14878  | 0.005           | 0.01          | 120.00 | 0.40         | 0.455           | 9.52          | 0.40         | 0.45            | 2.20          | 76.92          | 15 38           | 3.85          | 12.87         |
| 14844  | 0.005           | 0.005         | 66.67  | 0.1          | 0.205           | 2.47          | 0.2          | 0.125           | 0.00          | 95.24          | 2.38            | 4.76          | 3.98          |
| 14680  | 0.01            | 0.005         | 66.67  | 0.2          | 0.21            | 4.88          | 0.2          | 0.215           | 7.23          | 90.91          | 4.55            | 2.27          | 2.85          |
| 14871  | 0.02            | 0.005         | 120.00 | 0.32         | 0.35            | 8.96          | 0.32         | 0.365           | 13.14         | 86.49          | 5.41            | 1.35          | 0.57          |
| 14887  | 0.01            | 0.03          | 100.00 | 0.42         | 0.43            | 2.35          | 0.42         | 0.41            | 2.41          | 95.45          | 2.27            | 6.82          | 1.90          |
| 14689  | 0.01            | 0.005         | 66.67  | 0.69         | 0.67            | 2.94          | 0.69         | 0.675           | 2.20          | 101.47         | 1.47            | 0.74          | 0.31          |
| 14095  | 0.005           | 0.005         | 0.00   | 0.13         | 0.135           | 2.67          | 0.13         | 0.135           | 2.67          | 92.00          | 2.63            | 3.57          | 2.99          |
| 14666  | 0.003           | 0.005         | 66.67  | 0.31         | 0.31            | 0.00          | 0.31         | 0.315           | 1.60          | 96.88          | 3.13            | 1.56          | 2.20          |
| 14685  | 0.01            | 0.005         | 66.67  | 1.8          | 1.78            | 1.12          | 1.8          | 1.785           | 0.84          | 100.56         | 0.56            | 0.28          | 0.58          |
| 14685B | 0.01            | 0.005         | 66.67  | 1.8          | 1.94            | 7.49          | 1.8          | 1.945           | 7.74          | 92.31          | 0.51            | 0.26          | 0.43          |
| 14545  | 0.01            | 0.005         | 66.67  | 0.13         | 0.18            | 32.26         | 0.13         | 0.185           | 34.92         | 68.42          | 5.26            | 2.63          | 11.00         |
| 14565  | 0.005           | 0.005         | 0.00   | 0.24         | 0.225           | 6.45          | 0.24         | 0.225           | 6.45          | 104.35         | 2.17            | 2.17          | 1.82          |
| 14571  | 0.02            | 0.005         | 120.00 | 1.03         | 1.02            | 0.98          | 1.03         | 1.035           | 0.48          | 99.04          | 1.92            | 0.48          | 1.01          |
| 14578B | 0.02            | 0.005         | 120.00 | 1.02         | 1.8             | 0.52          | 1.02         | 1.815           | 0.28          | 98.96          | 1.10            | 0.27          | 0.80          |
| 14598  | 0.01            | 0.005         | 66.67  | 0.13         | 0.12            | 8.00          | 0.13         | 0.125           | 3.92          | 100.00         | 7.69            | 3.85          | 3.22          |
| 14893  | 0.005           | 0.04          | 155.56 | 0.08         | 0.105           | 27.03         | 0.08         | 0.07            | 13.33         | 72.73          | 4.55            | 36.36         | 9.50          |
| 14899  | 0.005           | 0.005         | 0.00   | 0.02         | 0.015           | 28.57         | 0.02         | 0.015           | 28.57         | 100.00         | 25.00           | 25.00         | 41.82         |
| 14908  | 0.005           | 0.005         | 0.00   | 0.07         | 0.075           | 6.90          | 0.07         | 0.075           | 6.90          | 87.50          | 6.25            | 6.25          | 20.91         |
| 14917  | 0.005           | 0.005         | 0.00   | 0.16         | 0.185           | 14.49         | 0.16         | 0.185           | 14.49         | 84.21          | 2.63            | 2.63          | 9.90          |
| 14920  | 0.005           | 0.005         | 0.00   | 0.12         | 0.135           | 11.76         | 0.12         | 0.135           | 11.76         | 85.71          | 3.57            | 3.57          | 5.97          |
| 15862  | 0.005           | 0.005         | 0.00   | 0.12         | 0.125           | +.00<br>85 71 | 0.12         | 0.125           | 4.00<br>85 71 | 37.50          | 6 25            | 6.25          | 7.84          |
| 15870  | 0.02            | 0.005         | 120.00 | 0.09         | 0.11            | 20.00         | 0.09         | 0.125           | 32.56         | 69.23          | 15.38           | 3.85          | 19.30         |
| 15879  | 0.02            | 0.005         | 120.00 | 0.09         | 0.1             | 10.53         | 0.09         | 0.115           | 24.39         | 75.00          | 16.67           | 4.17          | 15.68         |
| 15887  | 0.01            | 0.005         | 66.67  | 0.29         | 0.3             | 3.39          | 0.29         | 0.305           | 5.04          | 93.55          | 3.23            | 1.61          | 3.37          |
| 15891  | 0.02            | 0.005         | 120.00 | 0.09         | 0.12            | 28.57         | 0.09         | 0.135           | 40.00         | 64.29          | 14.29           | 3.57          | 22.40         |
| 15908  | 0.02            | 0.005         | 120.00 | 0.2          | 0.2             | 0.00          | 0.2          | 0.215           | 7.23          | 90.91          | 9.09            | 2.27          | 2.85          |

#### Project: Schaft Creek Client: Copper Fox Metals Inc. Data: QA/QC Data - Sulphur and NP Species Comments: Sampled by MDAG on Feb 7'07.

| Carbonate Leach<br>S (Sulphate)<br>(%) | HCI Leachable<br>S (Sulphate)<br>(%)           | RPD<br>(%)                                                                          | S (Sulphide)<br>(% Leco)                                                                                                                                                                                                                                                                                                                                                        | %S(Sulphide)<br>Calculated from<br>Carbonate Leach<br>S (Sulphate)<br>(%)                                                                                                                                                                                                                                                                                                                           | RPD<br>(%)                                                                                                                                                                                                                                                                                 | S (Sulphide)<br>(% Leco)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | %S(Sulphide)<br>Calculated from<br>HCI Leachable<br>S (Sulphate)<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RPD<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (% Leco/Calc)/<br>S (Sulphide)/<br>S (Total)*100<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carbonate Leach<br>S (Sulphate)/<br>S (Total)*100<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HCl Leachable<br>S (Sulphate)/<br>S (Total)*100<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S(BaSO4)/<br>S (Total)*100<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.01                                   | 0.005                                          | 66.67                                                                               | 0.07                                                                                                                                                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                                                                                                                                                                | 13.33                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                        |                                                | 156<br>0<br>70.3<br>52.4                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     | 100<br>0<br>11.2<br>17.7                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109<br>1.4E-14<br>12.6<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104.00<br>28.60<br>87<br>16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65.20<br>0.51<br>7.67<br>11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60.90<br>0.26<br>5.29<br>11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.80<br>0.31<br>5.39<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        |                                                | 0<br>2.07<br>66.7<br>120<br>143                                                     |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     | 0.97<br>2.96<br>5.92<br>10.9<br>27.3                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94<br>2.44<br>5.92<br>14.6<br>29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.6<br>82.4<br>92.5<br>99.5<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.27<br>2.33<br>3.57<br>7.69<br>15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.45<br>1.3<br>2.27<br>3.85<br>6.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.69<br>1.08<br>2.79<br>6.06<br>13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                                                | 118<br>2743<br>-0.11<br>0.74                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                     | 7.95<br>312<br>3.71<br>1.58                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.2<br>362<br>3.4<br>1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17.2<br>287<br>-1.87<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.37<br>131<br>3.72<br>1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.55<br>128<br>3.99<br>2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.99<br>51.9<br>2.89<br>1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        | Carbonate Leach<br>S (Sulphate)<br>(%)<br>0.01 | Carbonate Leach<br>S (Sulphate)<br>(%)HCl Leachable<br>S (Sulphate)<br>(%)0.010.005 | Carbonate Leach<br>S (Sulphate)<br>(%)         HCl Leachable<br>S (Sulphate)<br>(%)         RPD<br>(%)           0.01         0.005         66.67           156<br>0<br>70.3<br>52.4         156<br>0<br>70.3<br>52.4         0<br>2.07<br>66.7<br>120<br>143           1         118<br>2743<br>-0.11<br>0.74         118<br>2743           2         74         -0.11<br>0.74 | Carbonate Leach<br>S (Sulphate)<br>(%)         HCl Leachable<br>S (Sulphate)<br>(%)         RPD<br>(%)         S (Sulphide)<br>(% Leco)           0.01         0.005         66.67         0.07           156<br>0<br>70.3<br>52.4         0         156         0           0         2.07         66.7         120           143         118         2743           -0.11         0.74         59 | Carbonate Leach HCl Leachable<br>S (Sulphate) S (Sulphate) RPD<br>(%) (%) (%) S (Sulphide) S (Sulphate)<br>(%) (%) (%) (%) S (Sulphate)<br>(% Leco) (%)<br>0.01 0.005 66.67 0.07 0.08<br>156<br>0<br>70.3<br>52.4<br>0<br>2.07<br>66.7<br>120<br>143<br>118<br>2743<br>-0.11<br>0.74<br>59 | Carbonate Leach         HCl Leachable         Caclulated from Carbonate Leach         RPD           S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         RPD           (%)         (%)         (%)         S (Sulphate)         RPD           (%)         0.005         66.67         0.07         0.08         13.33           156         0         0         0         0         0           70.3         52.4         17.7         11.2         17.7           0         2.07         66.7         5.92         10.9           120         120         10.9         14.3         27.3           118         2743         312         3.71           0.74         1.58         59         59 | Carbonate Leach         HCl Leachable         RPD         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         RPD         S (Sulphate)         RPD         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         RPD | Carbonate Leach         HCl Leachable         Calculated from<br>(%)         Calculated from<br>(%)         Calculated from<br>(%)         Calculated from<br>HCl Leachable           S (Sulphate)         S (Sulphate)         RPD<br>(%)         S (Sulphate)         RPD<br>(%)         S (Sulphate)         RPD<br>(%)         S (Sulphate)         < | Calculated from<br>Calculated from<br>(%)         Calculated from<br>(%)         Calculate | Carbonate Leach         HCI Leachable         RPD         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         RPD         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate) <ths< td=""><td>Carbonate Leach         HCl Leachable         F         Calculated from Carbonate Leach         RPD         S (Sulphate)         RPD         S (Sulphate)         S (Total)*100         S (Total)*100         <th< td=""><td>Carbonate Leach         HCI Leachable         RPD         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sup</td></th<></td></ths<> | Carbonate Leach         HCl Leachable         F         Calculated from Carbonate Leach         RPD         S (Sulphate)         RPD         S (Sulphate)         S (Total)*100         S (Total)*100 <th< td=""><td>Carbonate Leach         HCI Leachable         RPD         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sup</td></th<> | Carbonate Leach         HCI Leachable         RPD         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sulphate)         RPD         S (Sulphate)         S (Sulphate)         S (Sulphate)         S (Sup |

Project:

Client: Data:

|        | Ratio           | Ratio     | Ratio        | Ratio            | Ratio            |
|--------|-----------------|-----------|--------------|------------------|------------------|
| Sample | NP /            | NP /      | NP /         | Inorganic CaNP / | Inorganic CaNP / |
| 1d.    | Inorganic CaiNP | (Ca) CanP | (Ca+wg) Camp | (Ca) CanP        | (Ca+Mg) CaNP     |
|        |                 |           |              |                  |                  |
| 14018  | 1.32            | 0.94      | 0.47         | 0.72             | 0.36             |
| 14021  | 1.08            | 0.98      | 0.62         | 0.90             | 0.57             |
| 14036  | 1.20            | 1.07      | 0.59         | 0.89             | 0.49             |
| 14043  | 2.20            | 1.14      | 0.35         | 0.52             | 0.16             |
| 14060  | 1.60            | 0.52      | 0.25         | 0.29             | 0.14             |
| 14076  | 1.00            | 0.70      | 0.20         | 0.40             | 0.17             |
| 14083  | 1.08            | 0.74      | 0.43         | 0.68             | 0.39             |
| 14099  | 1.01            | 1.06      | 0.73         | 1.05             | 0.72             |
| 14103  | 1.17            | 1.16      | 0.67         | 0.99             | 0.58             |
| 14130  | 0.91            | 1.39      | 0.85         | 1.53             | 0.93             |
| 14144  | 1.02            | 1.24      | 0.82         | 1.21             | 0.80             |
| 14148  | 1.07            | 1.47      | 0.88         | 1.38             | 0.82             |
| 14156  | 1.00            | 1.18      | 0.77         | 1.18             | 0.77             |
| 14162  | 1.15            | 1.57      | 0.88         | 1.37             | 0.77             |
| 14169  | 1.13            | 1.10      | 0.86         | 0.98             | 0.76             |
| 14232  | 1.22            | 1.34      | 0.86         | 1.10             | 0.70             |
| 14250  | 1.27            | 1.16      | 0.66         | 0.92             | 0.52             |
| 14260  | 1.19            | 1.32      | 0.75         | 1.11             | 0.63             |
| 14276  | 2.30            | 0.44      | 0.27         | 0.19             | 0.12             |
| 14295  | 1.59            | 1.14      | 0.69         | 0.62             | 0.49             |
| 14301  | 1.05            | 0.78      | 0.95         | 0.75             | 0.53             |
| 14323  | 1.04            | 1 12      | 0.55         | 0.73             | 0.33             |
| 14345  | 2 17            | 1 24      | 0.74         | 0.57             | 0.34             |
| 14348  | 1.18            | 1.10      | 0.57         | 0.93             | 0.48             |
| 14797  | 1.08            | 1.32      | 0.80         | 1.23             | 0.74             |
| 14808  | 0.93            | 1.41      | 0.91         | 1.51             | 0.98             |
| 14816  | 5.85            | 1.60      | 0.87         | 0.27             | 0.15             |
| 14828  | 1.01            | 1.32      | 0.78         | 1.30             | 0.77             |
| 14844  | 1.94            | 1.06      | 0.33         | 0.55             | 0.17             |
| 14680  | 1.18            | 0.99      | 0.60         | 0.84             | 0.50             |
| 14871  | 1.43            | 1.04      | 0.54         | 0.72             | 0.37             |
| 14887  | 1.22            | 0.92      | 0.52         | 0.76             | 0.42             |
| 14689  | 0.97            | 0.97      | 0.68         | 1.00             | 0.70             |
| 14695  | 1.04            | 1.15      | 0.71         | 1.10             | 0.68             |
| 14742  | 1.27            | 1.21      | 0.52         | 0.95             | 0.41             |
| 14685  | 1.33            | 1 35      | 0.50         | 0.03             | 0.33             |
| 14685B | 1.45            | 1.38      | 0.54         | 0.96             | 0.37             |
| 14545  | 1.54            | 0.81      | 0.50         | 0.52             | 0.33             |
| 14565  | 1.27            | 1.19      | 0.83         | 0.93             | 0.65             |
| 14571  | 1.19            | 1.18      | 0.67         | 0.98             | 0.56             |
| 14578  | 1.06            | 1.06      | 0.72         | 1.00             | 0.68             |
| 14578B | 1.07            | 1.13      | 0.76         | 1.05             | 0.71             |
| 14598  | 1.61            | 0.92      | 0.44         | 0.57             | 0.27             |
| 14893  | 1.28            | 1.07      | 0.51         | 0.83             | 0.40             |
| 14899  | 1.48            | 0.92      | 0.31         | 0.62             | 0.21             |
| 14908  | 1.57            | 0.79      | 0.39         | 0.50             | 0.25             |
| 14917  | 1.45            | 1.14      | 0.50         | 0.79             | 0.34             |
| 14920  | 1.34            | 1.04      | 0.47         | 0.08             | 0.35             |
| 15862  | 1.19            | 1.04      | 0.02         | 1.06             | 0.52             |
| 15870  | 1.17            | 1.20      | 0.73         | 1.00             | 0.03             |
| 15879  | 1.08            | 0.98      | 0.60         | 0.91             | 0.55             |
| 15887  | 1.27            | 0.92      | 0.56         | 0.73             | 0.45             |
| 15891  | 1.10            | 1.00      | 0.64         | 0.91             | 0.58             |
| 15908  | 1.21            | 1.07      | 0.64         | 0.89             | 0.53             |
|        |                 |           |              |                  |                  |

Client: Data:

| Samala                                      | Ratio          | Ratio     | Ratio        | Ratio            | Ratio           |
|---------------------------------------------|----------------|-----------|--------------|------------------|-----------------|
| Sample                                      | INP /          | INP /     | INP /        | morganic Gaine / | morganic Came / |
| ld.                                         | Inorganic CaNP | (Ca) CaNP | (Ca+Mg) CaNP | (Ca) CaNP        | (Ca+Mg) CaNP    |
|                                             |                |           |              |                  |                 |
| 15911                                       | 1.35           | 1.05      | 0.50         | 0.78             | 0.37            |
|                                             |                |           |              |                  |                 |
| Maximum                                     | 5.85           | 1.60      | 0.95         | 1.53             | 0.98            |
| Minimum                                     | 0.91           | 0.44      | 0.25         | 0.19             | 0.12            |
| Mean                                        | 1.37           | 1.09      | 0.62         | 0.88             | 0.51            |
| Standard Deviation                          | 0.67           | 0.24      | 0.18         | 0.3              | 0.22            |
|                                             |                |           |              |                  |                 |
| 10 Percentile                               | 1.02           | 0.79      | 0.35         | 0.52             | 0.2             |
| 25 Percentile                               | 1.08           | 0.97      | 0.5          | 0.7              | 0.36            |
| Median                                      | 1.2            | 1.1       | 0.62         | 0.9              | 0.5             |
| 75 Percentile                               | 1.45           | 1.24      | 0.76         | 1.05             | 0.69            |
| 90 Percentile                               | 1.69           | 1.39      | 0.86         | 1.25             | 0.77            |
|                                             |                |           |              |                  |                 |
| Interquartile Range (IQR) <sup>1</sup>      | 0.37           | 0.27      | 0.25         | 0.35             | 0.33            |
| Variance                                    | 0.45           | 0.056     | 0.033        | 0.088            | 0.047           |
| Skewness                                    | 5.47           | -0.33     | -0.24        | 0.039            | 0.089           |
| Coefficient of Variation (CoV) <sup>2</sup> | 0.49           | 0.22      | 0.29         | 0.34             | 0.43            |
|                                             | 0.40           | 0.22      | 0.20         | 0.04             | 0.40            |
| Count                                       | 59             | 59        | 59           | 59               | 59              |